16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative Analysis of Milk Fat Globular Membrane (MFGM) Proteome between Saudi Arabia Camelus dromedary Safra and Wadha Breeds

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Camel milk is traditionally known to have medicinal properties and many potential health benefits. Natural milk contains many soluble proteins and nanoparticles, such as a milk fat globule membrane (MFGM), a three-layered membrane covering of milk fat globule mainly composed of proteins and lipids, which plays an important role in human health. MFGM proteins account for 1%–4% of total milk proteins, and their nutritive value and distribution depends on the different breeds. The differential composition of these membrane proteins among different camel breeds has not been explored. The current study, therefore, aimed to quantitatively analyze and compare the MFGM proteome between the milk produced by the two most common Saudi camel breeds, Camelus dromedarius: Safra and Wadha. Two-dimensional difference in gel electrophoresis (2D-DIGE) and mass spectrometry analysis revealed a total of 44 MFGM proteins that were identified with a significant difference in abundance ( p ≤ 0.05; fold change ≥ 1.5) between the two breeds. Thirty-one proteins were up-regulated and 13 proteins were down-regulated in the Safra breed compared to the Wadha breed. The proteins identified with an increased abundance included α-lactalbumin, lactadherin, and annexin a8, whereas the down-regulated proteins included butyrophilin subfamily 1 member a1, lactotransferrin, and vinculin. The differentially abundant proteins were analyzed by the UNIPROT system and gene ontology (GO) to reveal their associations with known biological functions and pathways. Enzyme-linked immunosorbent assay (ELISA) confirmed the 2D-DIGE findings of butyrophilin (BTN) and α-lactalbumin (α-LA) levels obtained from Safra and Wadha breeds.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Compositional Dynamics of the Milk Fat Globule and Its Role in Infant Development

          Human milk is uniquely optimized for the needs of the developing infant. Its composition is complex and dynamic, driven primarily by maternal genetics, and to a lesser extent by diet and environment. One important component that is gaining attention is the milk fat globule (MFG). The MFG is composed of a triglyceride-rich core surrounded by a tri-layer membrane, also known as the milk fat globule membrane (MFGM) that originates from mammary gland epithelia. The MFGM is enriched with glycerophospholipids, sphingolipids, cholesterol, and proteins, some of which are glycosylated, and are known to exert numerous biological roles. Mounting evidence suggests that the structure of the MFG and bioactive components of the MFGM may benefit the infant by aiding in the structural and functional maturation of the gut through the provision of essential nutrients and/or regulating various cellular events during infant growth and immune education. Further, antimicrobial peptides and surface carbohydrate moieties surrounding the MFG might have a pivotal role in shaping gut microbial populations, which in turn may promote protection against immune and inflammatory diseases early in life. This review seeks to: (1) understand the components of the MFG, as well as maternal factors including genetic and lifestyle factors that influence its characteristics; (2) examine the potential role of this milk component on the intestinal immune system; and (3) delineate the mechanistic roles of the MFG in infant intestinal maturation and establishment of the microbiota in the alimentary canal.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The impact of the milk glycobiome on the neonate gut microbiota.

            Human milk is a complete source of nourishment for the infant. Exclusive breastfeeding not only sustains the infant's development but also guides the proliferation of a protective intestinal microbiota. Among the many components of milk that modulate the infant gut microbiota, the milk glycans, which comprise free oligosaccharides, glycoproteins, and glycolipids, are increasingly recognized as drivers of microbiota development and overall gut health. These glycans may display pleiotropic functions, conferring protection against infectious diseases and also acting as prebiotics, selecting for the growth of beneficial intestinal bacteria. The prebiotic effect of milk glycans has direct application to prevention of diseases such as necrotizing enterocolitis, a common and devastating disease of preterm infants. In this article, we review the impact of the human (and bovine) milk glycome on gut health through establishment of a milk-oriented microbiota in the neonate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bovine milk fat globule membrane proteome.

              Milk fat globule membranes (MFGM) were isolated from the milk of mid-lactation Holstein cows. The purified MFGM were fractionated using 1-dimensional SDS gels. Tryptic peptides from gel slices were further fractionated on a micro-capillary high performance liquid chromatograph connected to a nanospray-tandem mass spectrometer. Analysis of the data resulted in 120 proteins being identified by two or more unique peptide sequences. Of these 120 proteins, 71% are membrane associated proteins with the remainder being cytoplasmic or secreted proteins. Only 15 of the proteins identified in the cow MFGM were the same as proteins identified in previous mouse or human MFGM proteomic studies. Thus, the bulk of the proteins identified are new for bovine MFGM proteomics. The proteins identified were associated with membrane/protein trafficking (23%), cell signalling (23%), unknown functions (21%), fat transport/metabolism (11%), transport (9%), protein synthesis/folding (7%), immune proteins (4%) and milk proteins (2%). The proteins associated with cell signalling or membrane/protein trafficking may provide insights into MFGM secretion mechanisms. The finding of CD14, toll like receptor (TLR2), and TLR4 on MFGM suggests a direct role for the mammary gland in detecting an infection.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                04 May 2020
                May 2020
                : 25
                : 9
                : 2146
                Affiliations
                [1 ]Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, P.O. Box 80203, Jeddah 21589, Saudi Arabia; bassam_alsobahy@ 123456hotmail.com (B.H.S.); dralmehdar@ 123456hotmail.com (H.A.A.)
                [2 ]Proteomics Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; afsmasood@ 123456ksu.edu.sa (A.M.); aalfadda@ 123456ksu.edu.sa (A.A.A.)
                [3 ]The National Center for Genomic Technology (NCGT), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), PO Box 6086, Riyadh 11461, Saudi Arabia; ialenazi@ 123456kacst.edu.sa
                Author notes
                [* ]Correspondence: hbenabdelkamel@ 123456ksu.edu.sa (H.B.); lradwan@ 123456kau.edu.sa (E.M.R.); Tel.: +966-11-467-1315 (H.B.)
                Author information
                https://orcid.org/0000-0001-8082-9326
                https://orcid.org/0000-0002-4792-5188
                https://orcid.org/0000-0001-8246-0075
                Article
                molecules-25-02146
                10.3390/molecules25092146
                7249027
                32375319
                3b9f1f3a-99ee-427a-82dd-be67e1b6d70f
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 March 2020
                : 01 May 2020
                Categories
                Article

                safra breed,wadha breed,camel milk,proteomics,2d-dige,mfgm
                safra breed, wadha breed, camel milk, proteomics, 2d-dige, mfgm

                Comments

                Comment on this article