5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Review: How Forage Feeding Early in Life Influences the Growth Rate, Ruminal Environment, and the Establishment of Feeding Behavior in Pre-Weaned Calves

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Under natural grazing systems, calves are likely to consume forage in early life. However, forage inclusion in the diet of pre-weaned calves has long been a controversial issue due to it possibly being associated with negative calf performance. Recent published literature seems to confound previous research. This review aims to understand the factors that may influence forage inclusion in the ration of pre-weaned calves. We have explored research related to the effect of feeding forage on rumen and behavioral development to better understand whether forage should be fed to the young calf. Based on the findings, it is concluded that a small amount of good quality forage is recommended for calves to improve their behavioral expression and rumen environment, which may further improve calf performance.

          Abstract

          The provision of forage to pre-weaned calves has been continuously researched and discussed by scientists, though results associated with calf growth and performance have remained inconsistent. Multiple factors, including forage type, intake level, physical form, and feeding method of both solid and liquid feed, can influence the outcomes of forage inclusion on calf performance. In the current review, we summarized published literature in order to get a comprehensive understanding of how early forage inclusion in diets affects calf growth performance, rumen fermentation, microbiota composition, and the development of feeding behavior. A small amount of good quality forage, such as alfalfa hay, supplemented in the diet, is likely to improve calf feed intake and growth rate. Provision of forage early in life may result in greater chewing (eating and ruminating) activity. Moreover, forage supplementation decreases non-nutritive oral and feed sorting behaviors, which can help to maintain rumen fluid pH and increase the number of cellulolytic bacteria in the rumen. This review argues that forage provision early in life has the potential to affect the rumen environment and the development of feeding behavior in dairy calves. Continued research is required to further understand the long-term effects of forage supplementation in pre-weaned calves, because animal-related factors, such as feed selection and sorting, early in life may persist until later in adult life.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Environmental and Gut Bacteroidetes: The Food Connection

          Members of the diverse bacterial phylum Bacteroidetes have colonized virtually all types of habitats on Earth. They are among the major members of the microbiota of animals, especially in the gastrointestinal tract, can act as pathogens and are frequently found in soils, oceans and freshwater. In these contrasting ecological niches, Bacteroidetes are increasingly regarded as specialists for the degradation of high molecular weight organic matter, i.e., proteins and carbohydrates. This review presents the current knowledge on the role and mechanisms of polysaccharide degradation by Bacteroidetes in their respective habitats. The recent sequencing of Bacteroidetes genomes confirms the presence of numerous carbohydrate-active enzymes covering a large spectrum of substrates from plant, algal, and animal origin. Comparative genomics reveal specific Polysaccharide Utilization Loci shared between distantly related members of the phylum, either in environmental or gut-associated species. Moreover, Bacteroidetes genomes appear to be highly plastic and frequently reorganized through genetic rearrangements, gene duplications and lateral gene transfers (LGT), a feature that could have driven their adaptation to distinct ecological niches. Evidence is accumulating that the nature of the diet shapes the composition of the intestinal microbiota. We address the potential links between gut and environmental bacteria through food consumption. LGT can provide gut bacteria with original sets of utensils to degrade otherwise refractory substrates found in the diet. A more complete understanding of the genetic gateways between food-associated environmental species and intestinal microbial communities sheds new light on the origin and evolution of Bacteroidetes as animals’ symbionts. It also raises the question as to how the consumption of increasingly hygienic and processed food deprives our microbiota from useful environmental genes and possibly affects our health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber.

            The content of ruminally fermented OM in the diet affects the fiber requirement of dairy cattle. Physically effective fiber is the fraction of feed that stimulates chewing activity. Chewing, in turn, stimulates saliva secretion. Bicarbonate and phosphate buffers in saliva neutralize acids produced by fermentation of OM in the rumen. The balance between the production of fermentation acid and buffer secretion is a major determinant of ruminal pH. Low ruminal pH may decrease DMI, fiber digestibility, and microbial yield and thus decrease milk production and increase feed costs. Diets should be formulated to maintain adequate mean ruminal pH, and variation in ruminal pH should be minimized by feeding management. The fraction of OM that is fermented in the rumen varies greatly among diets. This variation affects the amount of fermentation acids produced and directly affects the amount of physically effective fiber that is required to maintain adequate ruminal pH. Acid production in the rumen is due primarily to fermentation of carbohydrates, which represent over 65% of the DM in diets of dairy cows and have the most variable ruminal degradation across diets. The non-fiber carbohydrate content of the diet is often used as a proxy for ruminal fermentability, but this measure is inadequate. Ruminal fermentation of both nonfiber carbohydrate and fiber is extremely variable, and this variability is not related to the nonfiber carbohydrate content of the diet. The interaction of ruminally fermented carbohydrate and physically effective fiber must be considered when diets for dairy cattle are evaluated and formulated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential.

              Establishment of ruminal bacterial community in dairy calves. Rumen bacterial community was analysed on 6 calves bred according to commercial practices from day one to weaning at day 83 of age, using 454 16S rRNA-based pyrosequencing. Samples taken at day 1 did not produce amplicons. Analysis of data revealed a three-stage implantation process with a progressive but important shift of composition. At day 2, the bacterial community was mainly composed of Proteobacteria (70%) and Bacteroidetes (14%), and Pasteurellaceae was the dominant family (58%). The bacterial community abruptly changed between days 2 and 3, and until day 12, dominant genera were Bacteroides (21%), Prevotella (11%), Fusobacterium (5%) and Streptococcus (4%). From 15 to 83 days, when solid food intake rapidly increased, Prevotella became dominant (42%) and many genera strongly decreased or were no longer detected. A limited number of bacteria genera correlated with feed intake, rumen volatile fatty acids and enzymatic activities. The ruminal bacterial community is established before intake of solid food, but solid food arrival in turn shapes this community. This study provides insight into the establishment of calves' rumen bacterial community and suggests a strong effect of diet. © 2013 The Society for Applied Microbiology.
                Bookmark

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                22 January 2020
                February 2020
                : 10
                : 2
                : 188
                Affiliations
                [1 ]State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; dairyxiao@ 123456gmail.com (J.X.); maswayi@ 123456yahoo.com (G.M.A.); yajingwang_cau@ 123456163.com (Y.W.); lisheng0677@ 123456163.com (S.L.)
                [2 ]Department of Animal Science, University of California, Davis, CA 95616, USA; lgreyhui@ 123456hotmail.com
                [3 ]State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
                Author notes
                [* ]Correspondence: caozhijun@ 123456cau.edu.cn ; Tel.: +86-10-6273-3746
                [†]

                These authors contributed equally to this review.

                Author information
                https://orcid.org/0000-0003-3977-6917
                Article
                animals-10-00188
                10.3390/ani10020188
                7071100
                31978953
                3be3cdf4-8e14-4dff-b9a1-de521acccf23
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 November 2019
                : 19 January 2020
                Categories
                Review

                calves,forage,performance,rumen fermentation,behavior
                calves, forage, performance, rumen fermentation, behavior

                Comments

                Comment on this article