6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MET in glioma: signaling pathways and targeted therapies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gliomas represent the most common type of malignant brain tumor, among which, glioblastoma remains a clinical challenge with limited treatment options and dismal prognosis. It has been shown that the dysregulated receptor tyrosine kinase (RTK, including EGFR, MET, PDGFRα, ect.) signaling pathways have pivotal roles in the progression of gliomas, especially glioblastoma. Increasing evidence suggests that expression levels of the RTK MET and its specific stimulatory factors are significantly increased in glioblastomas compared to those in normal brain tissues, whereas some negative regulators are found to be downregulated. Mutations in MET, as well as the dysregulation of other regulators of cross-talk with MET signaling pathways, have also been identified. MET and its ligand hepatocyte growth factor (HGF) play a critical role in the proliferation, survival, migration, invasion, angiogenesis, stem cell characteristics, and therapeutic resistance and recurrence of glioblastomas. Therefore, combined targeted therapy for this pathway and associated molecules could be a novel and attractive strategy for the treatment of human glioblastoma. In this review, we highlight progress made in the understanding of MET signaling in glioma and advances in therapies targeting HGF/MET molecules for glioma patients in recent years, in addition to studies on the expression and mutation status of MET.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers.

          Mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR) gene in lung cancers are associated with increased sensitivity of these cancers to drugs that inhibit EGFR kinase activity. However, the role of such mutations in the pathogenesis of lung cancers is unclear. We sequenced exons 18-21 of the EGFR TK domain from genomic DNA isolated from 617 non-small-cell lung cancers (NSCLCs) and 524 normal lung tissue samples from the same patients and 36 neuroendocrine lung tumors collected from patients in Japan, Taiwan, the United States, and Australia and from 243 other epithelial cancers. Mutation status was compared with clinicopathologic features and with the presence of mutations in KRAS, a gene in the EGFR signaling pathway that is also frequently mutated in lung cancers. All statistical tests were two sided. We detected a total of 134 EGFR TK domain mutations in 130 (21%) of the 617 NSCLCs but not in any of the other carcinomas, nor in nonmalignant lung tissue from the same patients. In NSCLC patients, EGFR TK domain mutations were statistically significantly more frequent in never smokers than ever smokers (51% versus 10%), in adenocarcinomas versus cancer of other histologies (40% versus 3%), in patients of East Asian ethnicity versus other ethnicities (30% versus 8%), and in females versus males (42% versus 14%; all P < .001). EGFR TK domain mutation status was not associated with patient age at diagnosis, clinical stage, the presence of bronchioloalveolar histologic features, or overall survival. The EGFR TK domain mutations we detected were of three common types: in-frame deletions in exon 19, single missense mutations in exon 21, and in-frame duplications/insertions in exon 20. Rare missense mutations were also detected in exons 18, 20, and 21. KRAS gene mutations were present in 50 (8%) of the 617 NSCLCs but not in any tumors with an EGFR TK domain mutation. Mutations in either the EGFR TK domain or the KRAS gene can lead to lung cancer pathogenesis. EGFR TK domain mutations are the first molecular change known to occur specifically in never smokers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma.

            Tumor heterogeneity has been implicated in tumor growth and progression as well as resistance to therapy. We present an example of genetic heterogeneity in human malignant brain tumors in which multiple closely related driver genes are amplified and activated simultaneously in adjacent intermingled cells. We have observed up to three different receptor tyrosine kinases (EGFR, MET, PDGFRA) amplified in single tumors in different cells in a mutually exclusive fashion. Each subpopulation was actively dividing, and the genetic changes resulted in protein production, and coexisting subpopulations shared common early genetic mutations indicating their derivation from a single precursor cell. The stable coexistence of different clones within the same tumor will have important clinical implications for tumor resistance to targeted therapies. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies.

              Targeted therapies that inhibit receptor tyrosine kinases (RTKs) and the downstream phosphatidylinositol 3-kinase (PI3K) signaling pathway have shown promising anticancer activity, but their efficacy in the brain tumor glioblastoma multiforme (GBM) and other solid tumors has been modest. We hypothesized that multiple RTKs are coactivated in these tumors and that redundant inputs drive and maintain downstream signaling, thereby limiting the efficacy of therapies targeting single RTKs. Tumor cell lines, xenotransplants, and primary tumors indeed show multiple concomitantly activated RTKs. Combinations of RTK inhibitors and/or RNA interference, but not single agents, decreased signaling, cell survival, and anchorage-independent growth even in glioma cells deficient in PTEN, a frequently inactivated inhibitor of PI3K. Thus, effective GBM therapy may require combined regimens targeting multiple RTKs.
                Bookmark

                Author and article information

                Contributors
                fanglingcfl@163.com
                guodongsheng@yahoo.com
                Journal
                J Exp Clin Cancer Res
                J. Exp. Clin. Cancer Res
                Journal of Experimental & Clinical Cancer Research : CR
                BioMed Central (London )
                0392-9078
                1756-9966
                20 June 2019
                20 June 2019
                2019
                : 38
                : 270
                Affiliations
                ISNI 0000 0004 0368 7223, GRID grid.33199.31, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, , Huazhong University of Science and Technology, ; No.1095, Jiefang Avenue, Wuhan, 430030 China
                Article
                1269
                10.1186/s13046-019-1269-x
                6585013
                31221203
                3c10c4fa-6c41-43b3-8457-59e316fc3c0a
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 2 May 2019
                : 4 June 2019
                Funding
                Funded by: The National Natural Science Foundation of China
                Award ID: 81372711
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2019

                Oncology & Radiotherapy
                glioma,glioblastoma,met,receptor tyrosine kinase,targeted therapy
                Oncology & Radiotherapy
                glioma, glioblastoma, met, receptor tyrosine kinase, targeted therapy

                Comments

                Comment on this article