30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The role of early life genistein exposures in modifying breast cancer risk

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Review of the existing literature suggests that consumption of soy foods or an exposure to a soy isoflavone genistein during childhood and adolescence in women, and before puberty onset in animals, reduces later mammary cancer risk. In animal studies, an exposure that is limited to the fetal period or adult life does not appear to have the same protective effect. A meta-analysis of human studies indicates a modest reduction in pre- and postmenopausal risk when dietary intakes are assessed during adult life. These findings concur with emerging evidence indicating that timing may be vitally important in determining the effects of various dietary exposures on the susceptibility to develop breast cancer. In this review, we address the mechanisms that might mediate the effects of an early life exposure to genistein on the mammary gland. The focus is on changes in gene expression, such as those involving BRCA1 and PTEN. It will be debated whether mammary stem cells are the targets of genistein-induced alterations and also whether the alterations are epigenetic. We propose that the effects on mammary gland morphology and signalling pathways induced by pubertal exposure to genistein mimic those induced by the oestrogenic environment of early first pregnancy.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          PTEN, more than the AKT pathway.

          Phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/phosphatidylinositol 3-kinase (PI3K)/AKT constitute an important pathway regulating the signaling of multiple biological processes such as apoptosis, metabolism, cell proliferation and cell growth. PTEN is a dual protein/lipid phosphatase and its main substrate phosphatidyl-inositol 3,4,5 triphosphate (PIP3) is the product of PI3K. Increase in PIP3 recruits AKT to the membrane where is activated by other kinases also dependent on PIP3. Many components of this pathway have been described as causal forces in cancer. PTEN activity is lost by mutations, deletions or promoter methylation silencing at high frequency in many primary and metastatic human cancers. Germ line mutations of PTEN are found in several familial cancer predisposition syndromes. Recently, many activating mutations in the PI3KCA gene (coding for the p110alpha catalytic subunit of PI3K) have been described in human tumors. Activation of PI3K and AKT are reported to occur in breast, ovarian, pancreatic, esophageal and other cancers. Genetically modified mice confirm these PTEN activities. Tissue-specific deletions of PTEN usually provoke cancer. Moreover, an absence of PTEN cooperates with an absence of p53 to promote cancer. However, we have observed very different results with the expression of activated versions of AKT in several tissues. Activated AKT transgenic lines do not develop tumors in breast or prostate tissues and do not cooperate with an absence of p53. This data suggest that an AKT-independent mechanism contributes to PTEN tumorigenesis. Crosses with transgenic mice expressing possible PTEN targets indicate that neither cyclin D1 nor p53 are these AKT-independent targets. However, AKT is more than a passive bridge toward PTEN tumorigenesis, since its expression not only allows but also enforces and accelerates the tumorigenic process in combination with other oncogenes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair.

            Basal-like breast cancer (BBC) is a subtype of breast cancer with poor prognosis. Inherited mutations of BRCA1, a cancer susceptibility gene involved in double-strand DNA break (DSB) repair, lead to breast cancers that are nearly always of the BBC subtype; however, the precise molecular lesions and oncogenic consequences of BRCA1 dysfunction are poorly understood. Here we show that heterozygous inactivation of the tumor suppressor gene Pten leads to the formation of basal-like mammary tumors in mice, and that loss of PTEN expression is significantly associated with the BBC subtype in human sporadic and BRCA1-associated hereditary breast cancers. In addition, we identify frequent gross PTEN mutations, involving intragenic chromosome breaks, inversions, deletions and micro copy number aberrations, specifically in BRCA1-deficient tumors. These data provide an example of a specific and recurrent oncogenic consequence of BRCA1-dependent dysfunction in DNA repair and provide insight into the pathogenesis of BBC with therapeutic implications. These findings also argue that obtaining an accurate census of genes mutated in cancer will require a systematic examination for gross gene rearrangements, particularly in tumors with deficient DSB repair.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Meta-analysis of soy intake and breast cancer risk.

              High intake of soy foods has been proposed to contribute to the low breast cancer risk in Asian countries. However, results of epidemiologic studies of this association are highly variable, and experimental data suggest that soy constituents can be estrogenic and potentially risk enhancing. Thus, rigorous evaluation of available epidemiologic data is necessary before appropriate recommendations can be made, especially for women at high risk of breast cancer or those who have survived the disease. We performed a meta-analysis of 18 epidemiologic studies (12 case-control and six cohort or nested case-control) published from 1978 through 2004 that examined soy exposure and breast cancer risk. Pooled relative risk estimates were based on either the original soy exposure measure defined in each study or on an estimate of daily soy protein intake. Risk estimates, levels and measures of soy exposure, and control for confounding factors varied considerably across studies. In a pooled analysis, among all women, high soy intake was modestly associated with reduced breast cancer risk (odds ratio [OR] = 0.86, 95% confidence interval [CI] = 0.75 to 0.99); the association was not statistically significant among women in Asian countries (OR = 0.89, 95% CI = 0.71 to 1.12). Among the 10 studies that stratified by menopausal status the inverse association between soy exposure and breast cancer risk was somewhat stronger in premenopausal women (OR = 0.70, 95% CI = 0.58 to 0.85) than in postmenopausal women (OR = 0.77, 95% CI = 0.60 to 0.98); however, eight studies did not provide menopause-specific results, six of which did not support an association. When exposure was analyzed by soy protein intake in grams per day, a statistically significant association with breast cancer risk was seen only among premenopausal women (OR = 0.94, 95% CI = 0.92 to 0.97). Soy intake may be associated with a small reduction in breast cancer risk. However, this result should be interpreted with caution due to potential exposure misclassification, confounding, and lack of a dose response. Given these caveats and results of some experimental studies that suggest adverse effects from soy constituents, recommendations for high-dose isoflavone supplementation to prevent breast cancer or prevent its recurrence are premature.
                Bookmark

                Author and article information

                Journal
                Br J Cancer
                British Journal of Cancer
                Nature Publishing Group
                0007-0920
                1532-1827
                08 April 2008
                05 May 2008
                06 May 2008
                : 98
                : 9
                : 1485-1493
                Affiliations
                [1 ]Functional Foods Forum, University of Turku Turku, Finland
                [2 ]Department of Oncology, Lombardi Cancer Center and Georgetown University 3970 Reservoir Road, NW, Washington, DC 20057, USA
                [3 ]Department of Biochemistry and Food Chemistry, University of Turku Turku, Finland
                Author notes
                [* ]Author for correspondence: clarkel@ 123456georgetown.edu
                Article
                6604321
                10.1038/sj.bjc.6604321
                2391102
                18392054
                3c41a897-6fb1-4744-86be-e6d4938857d5
                Copyright 2008, Cancer Research UK
                History
                : 17 October 2007
                : 13 February 2008
                : 03 March 2008
                Categories
                Review

                Oncology & Radiotherapy
                breast cancer,soy,mammary stem cell,genistein,epigenetic,tumour suppressors
                Oncology & Radiotherapy
                breast cancer, soy, mammary stem cell, genistein, epigenetic, tumour suppressors

                Comments

                Comment on this article