29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Complete genome sequence of a Megalocytivirus (family Iridoviridae) associated with turbot mortality in China

      research-article
      1 , 1 , 2 , 1 , 1 ,
      Virology Journal
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Turbot reddish body iridovirus (TRBIV) causes serious systemic diseases with high mortality in the cultured turbot, Scophthalmus maximus. We here sequenced and analyzed the complete genome of TRBIV, which was identified in Shandong province, China.

          Results

          The genome of TRBIV is a linear double-stranded DNA of 110,104 base pairs, comprising 55% G + C. Total 115 open reading frames were identified, encoding polypeptides ranging from 40 to 1168 amino acids. Amino acid sequences analysis revealed that 39 of the 115 potential gene products of TRBIV show significant homology to other iridovirus proteins. Phylogenetic analysis of conserved genes indicated that TRBIV is closely related to infectious spleen and kidney necrosis virus (ISKNV), rock bream iridovirus (RBIV), orange-spotted grouper iridovirus (OSGIV), and large yellow croaker iridovirus (LYCIV). The results indicated that TRBIV belongs to the genus Megalocytivirus (family Iridoviridae).

          Conclusions

          The determination of the genome of TRBIV will provide useful information for comparative study of Megalocytivirus and developing strategies to control outbreaks of TRBIV-induced disease.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          TreeView: an application to display phylogenetic trees on personal computers.

          R D Page (1996)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional genomics analysis of Singapore grouper iridovirus: complete sequence determination and proteomic analysis.

            Here we report the complete genome sequence of Singapore grouper iridovirus (SGIV). Sequencing of the random shotgun and restriction endonuclease genomic libraries showed that the entire SGIV genome consists of 140,131 nucleotide bp. One hundred sixty-two open reading frames (ORFs) from the sense and antisense DNA strands, coding for lengths varying from 41 to 1,268 amino acids, were identified. Computer-assisted analyses of the deduced amino acid sequences revealed that 77 of the ORFs exhibited homologies to known virus genes, 23 of which matched functional iridovirus proteins. Forty-two putative conserved domains or signatures were detected in the National Center for Biotechnology Information CD-Search database and PROSITE database. An assortment of enzyme activities involved in DNA replication, transcription, nucleotide metabolism, cell signaling, etc., were identified. Viruses were cultured on a cell line derived from the embryonated egg of the grouper Epinephelus tauvina, isolated, and purified by sucrose gradient ultracentrifugation. The protein extract from the purified virions was analyzed by polyacrylamide gel electrophoresis followed by in-gel digestion of protein bands. Matrix-assisted laser desorption ionization-time of flight mass spectrometry and database searching led to identification of 26 proteins. Twenty of these represented novel or previously unidentified genes, which were further confirmed by reverse transcription-PCR (RT-PCR) and DNA sequencing of their respective RT-PCR products.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complete genome analysis of the mandarin fish infectious spleen and kidney necrosis iridovirus.

              The nucleotide sequence of the infectious spleen and kidney necrosis virus (ISKNV) genome was determined and found to comprise 111,362 bp with a G+C content of 54.78%. It contained 124 potential open reading frames (ORFs) with coding capacities ranging from 40 to 1208 amino acids. The analysis of the amino acid sequences deduced from the individual ORFs revealed that 35 of the 124 potential gene products of ISKNV show significant homology to functionally characterized proteins of other species. Some of the putative gene products of ISKNV showed significant homologies to proteins in the GenBank/EMBL/DDBJ databases including enzymes and structural proteins involved in virus replication, transcription, protein modification, and virus-host interaction. In addition, one major repeated sequence showing significant homology to the Red Sea bream iridovirus (RSIV) genome was identified. Based on the information obtained from biological properties (including histopathology, tissue tropisms, natural host range, and geographic distribution), physiochemical and physical properties, and genome analysis, we suggest that ISKNV, RSIV, sea bass iridovirus, grouper iridovirus, and African lampeye iridovirus may belong to a new genus of the Iridoviridae family and are tentatively referred to as cell hypertrophy iridoviruses. Copyright 2001 Elsevier Science.
                Bookmark

                Author and article information

                Journal
                Virol J
                Virology Journal
                BioMed Central
                1743-422X
                2010
                15 July 2010
                : 7
                : 159
                Affiliations
                [1 ]Key Laboratory for Sustainable Utilization of Marine Fisheries Resource, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Qingdao 266071, China
                [2 ]Key Laboratory of Mariculture, Ministry of Education; Ocean University of China, Qingdao 266003, China
                Article
                1743-422X-7-159
                10.1186/1743-422X-7-159
                2912838
                20630106
                3c5e4ebc-c5f4-403b-bf4c-da6fe5653b8d
                Copyright ©2010 Shi et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 June 2010
                : 15 July 2010
                Categories
                Research

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article