6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Through-bottle whisky sensing and classification using Raman spectroscopy in an axicon-based backscattering configuration

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel optical design allows through-bottle Raman spectroscopy of alcohols with minimised glass contributions to the signal, by using a shaped laser beam which forms a ring on the glass and a focus within the contents.

          Abstract

          Non-intrusive detection systems have the potential to characterise materials through various transparent glass and plastic containers. Food and drink adulteration is increasingly problematic, representing a serious health risk as well as an economic issue. This is of particular concern for alcoholic spirits such as Scotch whisky which are often targeted for fraudulent activity. We have developed a Raman system with a novel geometry of excitation and collection, exploiting the beam propagation from an axicon lens, which results in an annular beam at the bottle surface before focusing within the sample. This facilitates the efficient acquisition of Raman signals from the alcoholic spirit contained inside the bottle, while avoiding the collection of auto-fluorescence signals generated by the bottle wall. Therefore, this technique provides a way of non-destructive and non-contact detection to precisely analyse the contents without the requirement to open the bottle.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy.

          We describe a simple methodology for the effective retrieval of Raman spectra of subsurface layers in diffusely scattering media. The technique is based on the collection of Raman scattered light from surface regions that are laterally offset away from the excitation laser spot on the sample. The Raman spectra obtained in this way exhibit a variation in relative spectral intensities of the surface and subsurface layers of the sample being investigated. The data set is processed using a multivariate data analysis to yield pure Raman spectra of the individual sample layers, providing a method for the effective elimination of surface Raman scatter. The methodology is applicable to the retrieval of pure Raman spectra from depths well in excess of those accessible with conventional confocal microscopy. In this first feasibility study we have differentiated between surface and subsurface Raman signals within a diffusely scattering sample composed of two layers: trans-stilbene powder beneath a 1 mm thick over-layer of PMMA (poly(methyl methacrylate)) powder. The improvement in contrast of the subsurface trans-stilbene layer without numerical processing was 19 times. The potential applications include biomedical subsurface probing of specific tissues through different overlying tissues such as assessment of bone quality through skin, providing an effective noninvasive means of screening for bone degeneration, other skeletal disease diagnosis, and dermatology studies, as well as materials and catalyst research.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Bessel and annular beams for materials processing

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamics of microparticles trapped in a perfect vortex beam.

              We analyze microparticle dynamics within a "perfect" vortex beam. In contrast to other vortex fields, for any given integer value of the topological charge, a "perfect" vortex beam has the same annular intensity profile with fixed radius of peak intensity. For a given topological charge, the field possesses a well-defined orbital angular momentum density at each point in space, invariant with respect to azimuthal position. We experimentally create a perfect vortex and correct the field in situ, to trap and set in motion trapped microscopic particles. For a given topological charge, a single trapped particle exhibits the same local angular velocity moving in such a field independent of its azimuthal position. We also investigate particle dynamics in "perfect" vortex beams of fractional topological charge. This light field may be applied for novel studies in optical trapping of particles, atoms, and quantum gases.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                AMNECT
                Analytical Methods
                Anal. Methods
                Royal Society of Chemistry (RSC)
                1759-9660
                1759-9679
                2020
                2020
                Affiliations
                [1 ]SUPA
                [2 ]School of Physics and Astronomy
                [3 ]University of St Andrews
                [4 ]UK
                [5 ]Department of Physics
                Article
                10.1039/D0AY01101K
                33001069
                3c9fbd52-3d79-4872-b7c9-02198516461f
                © 2020

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article