4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sodium acetate-mediated inhibition of histone deacetylase alleviates hepatic lipid dysregulation and its accompanied injury in streptozotocin-nicotinamide-induced diabetic rats

      ,
      Biomedicine & Pharmacotherapy
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies

          Summary Background Uncertainties persist about the magnitude of associations of diabetes mellitus and fasting glucose concentration with risk of coronary heart disease and major stroke subtypes. We aimed to quantify these associations for a wide range of circumstances. Methods We undertook a meta-analysis of individual records of diabetes, fasting blood glucose concentration, and other risk factors in people without initial vascular disease from studies in the Emerging Risk Factors Collaboration. We combined within-study regressions that were adjusted for age, sex, smoking, systolic blood pressure, and body-mass index to calculate hazard ratios (HRs) for vascular disease. Findings Analyses included data for 698 782 people (52 765 non-fatal or fatal vascular outcomes; 8·49 million person-years at risk) from 102 prospective studies. Adjusted HRs with diabetes were: 2·00 (95% CI 1·83–2·19) for coronary heart disease; 2·27 (1·95–2·65) for ischaemic stroke; 1·56 (1·19–2·05) for haemorrhagic stroke; 1·84 (1·59–2·13) for unclassified stroke; and 1·73 (1·51–1·98) for the aggregate of other vascular deaths. HRs did not change appreciably after further adjustment for lipid, inflammatory, or renal markers. HRs for coronary heart disease were higher in women than in men, at 40–59 years than at 70 years and older, and with fatal than with non-fatal disease. At an adult population-wide prevalence of 10%, diabetes was estimated to account for 11% (10–12%) of vascular deaths. Fasting blood glucose concentration was non-linearly related to vascular risk, with no significant associations between 3·90 mmol/L and 5·59 mmol/L. Compared with fasting blood glucose concentrations of 3·90–5·59 mmol/L, HRs for coronary heart disease were: 1·07 (0·97–1·18) for lower than 3·90 mmol/L; 1·11 (1·04–1·18) for 5·60–6·09 mmol/L; and 1·17 (1·08–1·26) for 6·10–6·99 mmol/L. In people without a history of diabetes, information about fasting blood glucose concentration or impaired fasting glucose status did not significantly improve metrics of vascular disease prediction when added to information about several conventional risk factors. Interpretation Diabetes confers about a two-fold excess risk for a wide range of vascular diseases, independently from other conventional risk factors. In people without diabetes, fasting blood glucose concentration is modestly and non-linearly associated with risk of vascular disease. Funding British Heart Foundation, UK Medical Research Council, and Pfizer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans.

            Insulin resistance plays an important role in the pathophysiology of diabetes and is associated with obesity and other cardiovascular risk factors. The "gold standard" glucose clamp and minimal model analysis are two established methods for determining insulin sensitivity in vivo, but neither is easily implemented in large studies. Thus, it is of interest to develop a simple, accurate method for assessing insulin sensitivity that is useful for clinical investigations. We performed both hyperinsulinemic isoglycemic glucose clamp and insulin-modified frequently sampled iv glucose tolerance tests on 28 nonobese, 13 obese, and 15 type 2 diabetic subjects. We obtained correlations between indexes of insulin sensitivity from glucose clamp studies (SI(Clamp)) and minimal model analysis (SI(MM)) that were comparable to previous reports (r = 0.57). We performed a sensitivity analysis on our data and discovered that physiological steady state values [i.e. fasting insulin (I(0)) and glucose (G(0))] contain critical information about insulin sensitivity. We defined a quantitative insulin sensitivity check index (QUICKI = 1/[log(I(0)) + log(G(0))]) that has substantially better correlation with SI(Clamp) (r = 0.78) than the correlation we observed between SI(MM) and SI(Clamp). Moreover, we observed a comparable overall correlation between QUICKI and SI(Clamp) in a totally independent group of 21 obese and 14 nonobese subjects from another institution. We conclude that QUICKI is an index of insulin sensitivity obtained from a fasting blood sample that may be useful for clinical research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              NAFLD: a multisystem disease.

              Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in Western countries that is predicted to become also the most frequent indication for liver transplantation by 2030. Over the last decade, it has been shown that the clinical burden of NAFLD is not only confined to liver-related morbidity and mortality, but there is now growing evidence that NAFLD is a multisystem disease, affecting extra-hepatic organs and regulatory pathways. For example, NAFLD increases risk of type 2 diabetes mellitus (T2DM), cardiovascular (CVD) and cardiac diseases, and chronic kidney disease (CKD). Although the primary liver pathology in NAFLD affects hepatic structure and function to cause morbidity and mortality from cirrhosis, liver failure and hepatocellular carcinoma, the majority of deaths among NAFLD patients are attributable to CVD. This narrative review focuses on the rapidly expanding body of clinical evidence that supports the concept of NAFLD as a multisystem disease. The review discusses the factors involved in the progression of liver disease in NAFLD and the factors linking NAFLD with other extra-hepatic chronic diseases, such as T2DM, CVD, cardiac diseases and CKD. The review will not discuss NAFLD treatments as these are discussed elsewhere in this issue of the Journal. For this review, PubMed was searched for articles using the keywords "non-alcoholic fatty liver disease" or "fatty liver" combined with "diabetes", "cardiovascular (or cardiac) disease", "cardiovascular mortality" or "chronic kidney disease" between 1990 and 2014. Articles published in languages other than English were excluded.
                Bookmark

                Author and article information

                Journal
                Biomedicine & Pharmacotherapy
                Biomedicine & Pharmacotherapy
                Elsevier BV
                07533322
                August 2020
                August 2020
                : 128
                : 110226
                Article
                10.1016/j.biopha.2020.110226
                32460191
                3cfadbda-87a8-4968-9dce-7282e8129900
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article