Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genetic Compatibility and Virulence of Reassortants Derived from Contemporary Avian H5N1 and Human H3N2 Influenza A Viruses

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The segmented structure of the influenza virus genome plays a pivotal role in its adaptation to new hosts and the emergence of pandemics. Despite concerns about the pandemic threat posed by highly pathogenic avian influenza H5N1 viruses, little is known about the biological properties of H5N1 viruses that may emerge following reassortment with contemporary human influenza viruses. In this study, we used reverse genetics to generate the 63 possible virus reassortants derived from H5N1 and H3N2 viruses, containing the H5N1 surface protein genes, and analyzed their viability, replication efficiency, and mouse virulence. Specific constellations of avian–human viral genes proved deleterious for viral replication in cell culture, possibly due to disruption of molecular interaction networks. In particular, striking phenotypes were noted with heterologous polymerase subunits, as well as NP and M, or NS. However, nearly one-half of the reassortants replicated with high efficiency in vitro, revealing a high degree of compatibility between avian and human virus genes. Thirteen reassortants displayed virulent phenotypes in mice and may pose the greatest threat for mammalian hosts. Interestingly, one of the most pathogenic reassortants contained avian PB1, resembling the 1957 and 1968 pandemic viruses. Our results reveal the broad spectrum of phenotypes associated with H5N1/H3N2 reassortment and a possible role for the avian PB1 in the emergence of pandemic influenza. These observations have important implications for risk assessment of H5N1 reassortant viruses detected in surveillance programs.

          Author Summary

          The influenza pandemics of 1957 and 1968 were caused by hybrid viruses consisting of a mixture of human and avian influenza genes. The introduction of avian genes resulted in a sudden change of the virus surface antigens, allowing its worldwide spread due to lack of immunity in the population. The highly pathogenic avian influenza H5N1 virus has continued its spread in domestic and wild birds in Asia, Europe, and Africa. Although H5N1 infection in humans is rare and person-to-person transmission is very inefficient, the steady accumulation of human cases has raised concern over the possible reassortment between H5N1 and human seasonal influenza resulting in a virus with new surface antigens and pandemic potential. In this study, we used recombinant DNA technology to generate a systematic collection of hybrid viruses (with genes from human and avian viruses) bearing H5N1 surface antigens and analyzed their properties in cell culture and in mice. The H5N1 hybrid viruses revealed a broad range of viability and multiplication capacity in cell cultures. In addition, several H5N1 hybrid viruses were highly virulent in mice. Results from this systematic analysis provide important insight to support risk assessment of reassortant H5N1 avian influenza viruses.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses.

          M Hatta (2001)
          In 1997, an H5N1 influenza A virus was transmitted from birds to humans in Hong Kong, killing 6 of the 18 people infected. When mice were infected with the human isolates, two virulence groups became apparent. Using reverse genetics, we showed that a mutation at position 627 in the PB2 protein influenced the outcome of infection in mice. Moreover, high cleavability of the hemagglutinin glycoprotein was an essential requirement for lethal infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls.

            In wild aquatic birds and poultry around the world, influenza A viruses carrying 15 antigenic subtypes of hemagglutinin (HA) and 9 antigenic subtypes of neuraminidase (NA) have been described. Here we describe a previously unidentified antigenic subtype of HA (H16), detected in viruses circulating in black-headed gulls in Sweden. In agreement with established criteria for the definition of antigenic subtypes, hemagglutination inhibition assays and immunodiffusion assays failed to detect specific reactivity between H16 and the previously described subtypes H1 to H15. Genetically, H16 HA was found to be distantly related to H13 HA, a subtype also detected exclusively in shorebirds, and the amino acid composition of the putative receptor-binding site of H13 and H16 HAs was found to be distinct from that in HA subtypes circulating in ducks and geese. The H16 viruses contained NA genes that were similar to those of other Eurasian shorebirds but genetically distinct from N3 genes detected in other birds and geographical locations. The European gull viruses were further distinguishable from other influenza A viruses based on their PB2, NP, and NS genes. Gaining information on the full spectrum of avian influenza A viruses and creating reagents for their detection and identification will remain an important task for influenza surveillance, outbreak control, and animal and public health. We propose that sequence analyses of HA and NA genes of influenza A viruses be used for the rapid identification of existing and novel HA and NA subtypes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of the 1918 influenza virus polymerase genes.

              The influenza A viral heterotrimeric polymerase complex (PA, PB1, PB2) is known to be involved in many aspects of viral replication and to interact with host factors, thereby having a role in host specificity. The polymerase protein sequences from the 1918 human influenza virus differ from avian consensus sequences at only a small number of amino acids, consistent with the hypothesis that they were derived from an avian source shortly before the pandemic. However, when compared to avian sequences, the nucleotide sequences of the 1918 polymerase genes have more synonymous differences than expected, suggesting evolutionary distance from known avian strains. Here we present sequence and phylogenetic analyses of the complete genome of the 1918 influenza virus, and propose that the 1918 virus was not a reassortant virus (like those of the 1957 and 1968 pandemics), but more likely an entirely avian-like virus that adapted to humans. These data support prior phylogenetic studies suggesting that the 1918 virus was derived from an avian source. A total of ten amino acid changes in the polymerase proteins consistently differentiate the 1918 and subsequent human influenza virus sequences from avian virus sequences. Notably, a number of the same changes have been found in recently circulating, highly pathogenic H5N1 viruses that have caused illness and death in humans and are feared to be the precursors of a new influenza pandemic. The sequence changes identified here may be important in the adaptation of influenza viruses to humans.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2008
                May 2008
                23 May 2008
                : 4
                : 5
                : e1000072
                Affiliations
                [1]Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
                Mount Sinai School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: LC CD NC RD. Performed the experiments: LC CD. Analyzed the data: LC CD HZ RD. Contributed reagents/materials/analysis tools: LC. Wrote the paper: LC CD HZ RD.

                Article
                08-PLPA-RA-0168R2
                10.1371/journal.ppat.1000072
                2374906
                18497857
                3d0e2c45-5b41-4dc4-822d-a8e7a87281d8
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 21 February 2008
                : 15 April 2008
                Page count
                Pages: 11
                Categories
                Research Article
                Virology/Animal Models of Infection
                Virology/Emerging Viral Diseases
                Virology/Virus Evolution and Symbiosis

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article