8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Natural Quinone Dyes: A Review on Structure, Extraction Techniques, Analysis and Application Potential

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Synthetic dyes are by far the most widely applied colourants in industry. However, environmental and sustainability considerations have led to an increasing efforts to substitute them with safer and more sustainable equivalents. One promising class of alternatives is the natural quinones; these are class of cyclic organic compounds characterized by a saturated (C6) ring that contains two oxygen atoms that are bonded to carbonyls and have sufficient conjugation to show color. Therefore, this study looks at the potential of isolating and applying quinone dye molecules from a sustainable source as a possible replacement for synthetic dyes. It presents an in-depth description of the three main classes of quinoid compounds in terms of their structure, occurrence biogenesis and toxicology. Extraction and purification strategies, as well as analytical methods, are then discussed. Finally, current dyeing applications are summarised. The literature review shows that natural quinone dye compounds are ubiquitous, albeit in moderate quantities, but all have a possibility of enhanced production. They also display better dyeability, stability, brightness and fastness compared to other alternative natural dyes, such as anthocyanins and carotenoids. Furthermore, they are safer for the environment than are many synthetic counterparts. Their extraction, purification and analysis are simple and fast, making them potential substitutes for their synthetic equivalents.

          Graphic Abstract

          Related collections

          Most cited references168

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Current approaches toward production of secondary plant metabolites

          Plants are the tremendous source for the discovery of new products with medicinal importance in drug development. Today several distinct chemicals derived from plants are important drugs, which are currently used in one or more countries in the world. Secondary metabolites are economically important as drugs, flavor and fragrances, dye and pigments, pesticides, and food additives. Many of the drugs sold today are simple synthetic modifications or copies of the naturally obtained substances. The evolving commercial importance of secondary metabolites has in recent years resulted in a great interest in secondary metabolism, particularly in the possibility of altering the production of bioactive plant metabolites by means of tissue culture technology. Plant cell and tissue culture technologies can be established routinely under sterile conditions from explants, such as plant leaves, stems, roots, and meristems for both the ways for multiplication and extraction of secondary metabolites. In vitro production of secondary metabolite in plant cell suspension cultures has been reported from various medicinal plants, and bioreactors are the key step for their commercial production. Based on this lime light, the present review is aimed to cover phytotherapeutic application and recent advancement for the production of some important plant pharmaceuticals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Current approaches and challenges for the metabolite profiling of complex natural extracts.

            Metabolite profiling is critical in many aspects of the life sciences, particularly natural product research. Obtaining precise information on the chemical composition of complex natural extracts (metabolomes) that are primarily obtained from plants or microorganisms is a challenging task that requires sophisticated, advanced analytical methods. In this respect, significant advances in hyphenated chromatographic techniques (LC-MS, GC-MS and LC-NMR in particular), as well as data mining and processing methods, have occurred over the last decade. Together, these tools, in combination with bioassay profiling methods, serve an important role in metabolomics for the purposes of both peak annotation and dereplication in natural product research. In this review, a survey of the techniques that are used for generic and comprehensive profiling of secondary metabolites in natural extracts is provided. The various approaches (chromatographic methods: LC-MS, GC-MS, and LC-NMR and direct spectroscopic methods: NMR and DIMS) are discussed with respect to their resolution and sensitivity for extract profiling. In addition the structural information that can be generated through these techniques or in combination, is compared in relation to the identification of metabolites in complex mixtures. Analytical strategies with applications to natural extracts and novel methods that have strong potential, regardless of how often they are used, are discussed with respect to their potential applications and future trends.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains

              Extensive structure elucidation has revealed a remarkable diversity of structures for carotenoids, anthocyanins, and betalains, the major natural pigments in plant-derived foods. Composition, stability, influencing factors, processing effects have been widely investigated. Carotenoids isomerize and oxidize while anthocyanins undergo hydrolysis, nucleophilic attack of water, ring fission, and polymerization during thermal processing. Betacyanins suffer deglycosylation, isomerization, dehydrogenation, hydrolysis, and decarboxylation. Biotechnological production dominates research on carotenoids as food colorants while the search for plant sources continues with anthocyanins and betalains. Stabilization studies presently focus on microencapsulation and nanoencapsulation. For anthocyanins, co-pigmentation has also been intensely researched. Carotenoids have been the most studied in terms of health effects, involving epidemiological, cell, animal, and human intervention studies, yet some inconsistencies in the results persist. A wide range of biological activities have been attributed to anthocyanins and betalains, based mainly on cell and animal studies; human clinical studies are lacking.
                Bookmark

                Author and article information

                Journal
                Waste and Biomass Valorization
                Waste Biomass Valor
                Springer Science and Business Media LLC
                1877-2641
                1877-265X
                December 2021
                May 10 2021
                December 2021
                : 12
                : 12
                : 6339-6374
                Article
                10.1007/s12649-021-01443-9
                3d1997c9-4909-49a0-a630-535afe16f3f4
                © 2021

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article