13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Saccharide-functionalized alkanethiols for fouling-resistant self-assembled monolayers: synthesis, monolayer properties, and antifouling behavior.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We describe the synthesis of a series of mono-, di-, and trisaccharide-functionalized alkanethiols as well as the formation of fouling-resistant self-assembled monolayers (SAMs) from these. The SAMs were characterized using ellipsometry, wetting measurements, and infrared reflection-absorption spectroscopy (IRAS). We show that the structure of the carbohydrate moiety affects the packing density and that this also alters the alkane chain organization. Upon increasing the size of the sugar moieties (from mono- to di- and trisaccharides), the structural qualities of the monolayers deteriorated with increasing disorder, and for the trisaccharide, slow reorganization dynamics in response to changes in the environmental polarity were observed. The antifouling properties of these SAMs were investigated through protein adsorption experiments from buffer solutions as well as settlement (attachment) tests using two common marine fouling species, zoospores of the green macroalga Ulva linza and cypris larvae of the barnacle Balanus amphitrite. The SAMs showed overall good resistance to fouling by both the proteins and the tested marine organisms. To improve the packing density of the SAMs with bulky headgroups, we employed mixed SAMs where the saccharide-thiols are diluted with a filler molecule having a small 2-hydroxyethyl headgroup. This method also provides a means by which the steric availability of sugar moieties can be varied, which is of interest for specific interaction studies with surface-bound sugars. The results of the surface dilution study and the low nonspecific adsorption onto the SAMs both indicate the feasibility of this approach.

          Related collections

          Author and article information

          Journal
          Langmuir
          Langmuir : the ACS journal of surfaces and colloids
          1520-5827
          0743-7463
          Dec 20 2011
          : 27
          : 24
          Affiliations
          [1 ] Division of Chemistry, IFM, Linköping University, SE-581 83 Linköping, Sweden.
          Article
          10.1021/la202774e
          22053781
          3de76754-da22-4e19-b5e6-3448a91a2e11
          © 2011 American Chemical Society
          History

          Comments

          Comment on this article