12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IL-33 Initiates Vascular Remodelling in Hypoxic Pulmonary Hypertension by up-Regulating HIF-1α and VEGF Expression in Vascular Endothelial Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          IL-33 may play a role in the vascular remodelling of hypoxic pulmonary hypertension (PH) but the precise mechanisms are still unclear. We hypothesized that hypoxia promotes expression of IL-33 and its receptor ST2 on vascular endothelial cells, which in turn leads to dysfunction of vascular endothelial cells and smooth muscle cells contributing to PH. Immunohistochemistry showed that immunoreactivity for IL-33 and ST2 was significantly increased in lung tissue of murine model of hypoxia-induced PH (HPH) and of subjects with bronchiectasis-PH. trans-Thoracic echocardiography showed that haemodynamic changes and right ventricular hypertrophy associated with HPH were significantly abrogated in St2 −/− compared with WT mice. Administration of IL-33 further exacerbated these changes in the hypoxia-exposed WT mice. In vitro, hypoxia significantly increased IL-33/ST2 expression by human pulmonary arterial endothelial cells (HPAECs), while exogenous IL-33 enhanced proliferation, adhesiveness and spontaneous angiogenesis of HPAECs. Knockdown of endogenous Il33 or St2 using siRNA transfection significantly suppressed these effects in both normoxic and hypoxic culture-conditions. Deletion of the St2 gene attenuated hypoxia-induced, elevated lung expression of HIF-1α/VEGFA/VEGFR-2/ICAM-1, while administration of exogenous VEGFA partially reversed the attenuation of the haemodynamic indices of PH. Correspondingly, knockdown of the St2 or Hif1α genes almost completely abrogated IL-33-induced expression of HIF-1α/VEGFA/VEGFR-2 by HPAECs in vitro. Further, IL-33-induced angiogenesis by HPAECs was extensively abrogated by knockdown of the Hif1α/Vegfa or Vegfr2 genes. These data suggest that hypoxia induces elevated expression of IL-33/ST2 by HPAECs which, at least partly by increasing downstream expression of HIF-1α and VEGF initiates vascular remodelling resulting in HPH.

          Highlights

          • Evidence before this study

          • We have been focusing on the role of cytokines in the pathogenesis of chronic pulmonary diseases for a long time, including asthma, COPD, fibrosis and bronchiectasis. We and others found that IL-33 might contribute to the occurrence and prognosis of many other diseases through binding its receptor ST2. Based on these findings, we were very eager to know whether IL-33/ST2 axis also exerts a role in hypoxia-induced pulmonary hypertension (HPH), a complication of many chronic respiratory diseases. Although it is well known that HIF-1α and VEGF play critical role in this complication, it is still unclear what the upstream of HIF-1α and VEGF is. Therefore, we first tested immunoreactivity for IL-33 and its receptor ST2 in the lung tissue sections derived from surgical specimens and from our established murine models of HPH. Surprisingly, we noted the increased immunoreactivity for both targets in these tissue sections. These findings inspired us to further explore the details of IL-33/ST2 in the pathogenesis of HPH.

          • Added value of this study

          • HPH is a life-threatening complication because there is lack of effective treatment. Although pulmonary arteries and ventricular remodelling might be mainly involved in the pathogenesis of the disease, the precise mechanisms are largely unknown. In the present study, we showed that hypoxia is a critical driver which induced expression of IL-33 and ST2 by endothelial cells. These factors, in turn triggered expression of HIF-1α and VEGF by endothelial cells and led to proliferation, adhesion and tube formation of these cells. We also showed that in the presence of IL-33, endothelial cells were able to affect proliferation and migration of artery smooth muscle cells, although IL-33 alone did not have such effects. These findings suggest that hypoxia and IL-33/ST2 might be initiators for HPH, through regulating downstream factors HIF-1α and VEGF.

          • Implications of all the available evidence

          • Our data suggest that IL-33/ST2 axis plays critical role in the pathogenesis of hypoxia-induced pulmonary hypertension because depletion of these molecules much remitted the phenomenon of complication. These observations might provide alternative therapeutic strategy for clinical treatment of HPH.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          T1/St2-Deficient Mice Demonstrate the Importance of T1/St2 in Developing Primary T Helper Cell Type 2 Responses

          We have generated mice with a deficiency in T1/ST2 expression to clarify the roles of T1/ST2 in T helper cell type 2 (Th2) responses. Using immunological challenges normally characterized by a Th2-like response, we have compared the responses of T1/ST2-deficient mice with those generated by wild-type mice. Using a primary pulmonary granuloma model, induced with Schistosoma mansoni eggs, we demonstrate that granuloma formation, characterized by eosinophil infiltration, is abrogated in T1/ST2-deficient mice. Furthermore, we clearly demonstrate that in the absence of T1/ST2 expression, the levels of Th2 cytokine production are severely impaired after immunization. Thus, in a secondary pulmonary granuloma model, draining lymph node cells from the T1/ST2-deficient animals produced significantly reduced levels of IL-4 and IL-5, despite developing granulomas of a magnitude similar to those of wild-type mice and comparable antigen-specific immunoglobulin isotype production. These data clearly demonstrate that T1/ST2 expression plays a role in the development of Th2-like cytokine responses and indicate that effector functions are inhibited in its absence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin.

            The peptide substance P (SP) has been implicated in inflammatory conditions, such as psoriasis, where mast cells and VEGF are increased. A relationship between SP and VEGF has not been well studied, nor has any interaction with the proinflammatory cytokines, especially IL-33. Here we report that SP (0.1-10 microM) induces gene expression and secretion of VEGF from human LAD2 mast cells and human umbilical core blood-derived cultured mast cells (hCBMCs). This effect is significantly increased by coadministration of IL-33 (5-100 ng/mL) in both cell types. The effect of SP on VEGF release is inhibited by treatment with the NK-1 receptor antagonist 733,060. SP rapidly increases cytosolic calcium, and so does IL-33 to a smaller extent; the addition of IL-33 augments the calcium increase. SP-induced VEGF production involves calcium-dependent PKC isoforms, as well as the ERK and JNK MAPKs. Gene expression of IL-33 and histidine decarboxylase (HDC), an indicator of mast cell presence/activation, is significantly increased in affected and unaffected (at least 15 cm away from the lesion) psoriatic skin, as compared with normal control skin. Immunohistochemistry indicates that IL-33 is associated with endothelial cells in both the unaffected and affected sites, but is stronger and also associated with immune cells in the affected site. These results imply that functional interactions among SP, IL-33, and mast cells leading to VEGF release contribute to inflammatory conditions, such as the psoriasis, a nonallergic hyperproliferative skin inflammatory disorder with a neurogenic component.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeting Vascular Remodeling to Treat Pulmonary Arterial Hypertension.

              Pulmonary arterial hypertension (PAH) describes a group of conditions with a common hemodynamic phenotype of increased pulmonary artery pressure, driven by progressive remodeling of small pulmonary arteries, leading to right heart failure and death. Vascular remodeling is the key pathological feature of PAH, but treatments targeting this process are lacking. In this review, we summarize important advances in our understanding of PAH pathogenesis from novel genetic and epigenetic factors, to cell metabolism and DNA damage. We show how these processes may integrate and highlight exploitable targets that could alter the relentless vascular remodeling in PAH.
                Bookmark

                Author and article information

                Contributors
                Journal
                EBioMedicine
                EBioMedicine
                EBioMedicine
                Elsevier
                2352-3964
                18 June 2018
                July 2018
                18 June 2018
                : 33
                : 196-210
                Affiliations
                [a ]The Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
                [b ]The Department of Physiology and Pathological Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
                [c ]Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
                [d ]Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
                [e ]Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Department of Inflammation Biology, Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
                [f ]The Department of Respirology, Capital Medical University, Beijing, China
                Author notes
                [* ]Corresponding author at: The Department of Immunology, School of Basic Medical Sciences, Capital Medical University, 10# Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing 100069, China. wy_robin@ 123456ccmu.edu.cn
                Article
                S2352-3964(18)30205-6
                10.1016/j.ebiom.2018.06.003
                6085568
                29921553
                3e370ac7-fd13-45dd-8938-f216b099ca23
                © 2018 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 11 May 2018
                : 3 June 2018
                : 6 June 2018
                Categories
                Research Paper

                il-33,hypoxic pulmonary hypertension,hypoxia inducible factor 1,vascular endothelial growth factor

                Comments

                Comment on this article