18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Fully Integrated and Miniaturized Heavy-metal-detection Sensor Based on Micro-patterned Reduced Graphene Oxide

      research-article

      1 , 1 , a , 1

      Scientific Reports

      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For this paper, a fully integrated and highly miniaturized electrochemical sensor was designed and fabricated on a silicon substrate. A solvothermal-assisted reduced graphene oxide named “TRGO” was then successfully micro-patterned using a lithography technique, followed by the electrodeposition of bismuth (Bi) on the surface of the micro-patterned TRGO for the electrochemical detection of heavy metal ions. The fully integrated electrochemical micro-sensor was then measured and evaluated for the detection of cadmium and lead-heavy metal ions in an acetic-acid buffered solution using the square wave anodic stripping voltammetry (SWASV) technique. The fabricated micro-sensor exhibited a linear detection range of 1.0 μg L −1 to 120.0 μg L −1 for both of the metal ions, and detection limits of 0.4 μg L −1 and 1.0 μg L −1 were recorded for the lead and cadmium (S/N = 3), respectively. Drinking-water samples were used for the practical assessment of the fabricated micro-sensor, and it showed an acceptable detection performance regarding the metal ions.

          Related collections

          Most cited references 13

          • Record: found
          • Abstract: found
          • Article: not found

          Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets.

          Flexible graphene films were prepared by the filtration of water-soluble noncovalently functionalized graphene sheets with pyrenebutyrate. The work presented here will not only open a new way for preparing water-soluble graphene dispersions but also provide a general route for fabricating conducting films based on graphene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials

            Ni(OH)2 nanocrystals grown on graphene sheets with various degrees of oxidation are investigated as electrochemical pseudocapacitor materials for potential energy storage applications. Single-crystalline Ni(OH)2 hexagonal nanoplates directly grown on lightly-oxidized, electrically-conducting graphene sheets (GS) exhibit a high specific capacitance of ~1335F/g at a charge and discharge current density of 2.8A/g and ~953F/g at 45.7A/g with excellent cycling ability. The high specific capacitance and remarkable rate capability are promising for applications in supercapacitors with both high energy and power densities. Simple physical mixture of pre-synthesized Ni(OH)2 nanoplates and graphene sheets show lower specific capacitance, highlighting the importance of direct growth of nanomaterials on graphene to impart intimate interactions and efficient charge transport between the active nanomaterials and the conducting graphene network. Single-crystalline Ni(OH)2 nanoplates directly grown on graphene sheets also significantly outperform small Ni(OH)2 nanoparticles grown on heavily-oxidized, electrically-insulating graphite oxide (GO), suggesting that the electrochemical performance of these composites are dependent on the quality of graphene substrates and the morphology and crystallinity of the nanomaterials grown on top. These results suggest the importance of rational design and synthesis of graphene-based nanocomposite materials for high-performance energy applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents.

              Refluxing graphene oxide (GO) in N-methyl-2-pyrrolidinone (NMP) results in deoxygenation and reduction to yield a stable colloidal dispersion. The solvothermal reduction is accompanied by a color change from light brown to black. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images of the product confirm the presence of single sheets of the solvothermally reduced graphene oxide (SRGO). X-ray photoelectron spectroscopy (XPS) of SRGO indicates a significant increase in intensity of the C=C bond character, while the oxygen content decreases markedly after the reduction is complete. X-ray diffraction analysis of SRGO shows a single broad peak at 26.24 degrees 2theta (3.4 A), confirming the presence of graphitic stacking of reduced sheets. SRGO sheets are redispersible in a variety of organic solvents, which may hold promise as an acceptor material for bulk heterojunction photovoltaic cells, or electromagnetic interference shielding applications.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                12 September 2016
                2016
                : 6
                Affiliations
                [1 ]Department of Electronic Engineering, Micro/Nano Devices & packaging Lab., Kwangwoon University , 447-1, Wolgye-Dong, Nowon Gu, Seoul, 139-701, Korea
                Author notes
                Article
                srep33125
                10.1038/srep33125
                5018876
                27616629
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article