Search for authorsSearch for similar articles
9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preparation, In Vitro Characterization, and In Vivo Pharmacokinetic Evaluation of Respirable Porous Microparticles Containing Rifampicin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study aimed to prepare and evaluate rifampicin microparticles for the lung delivery of rifampicin as respirable powder. The microparticles were prepared using chitosan by the spray-drying method and evaluated for aerodynamic properties and pulmonary drug absorption. To control the drug release, tripoly-phosphate in different concentrations 0.6, 0.9, 1.2, and 1.5 was employed to get a sustained drug release profile. The microparticles were evaluated for drug loading, % entrapment efficiency, tapped density, morphological characteristics, and in vitro drug release studies. Aerosol properties were determined using the Andersen cascade impactor. Porous microparticles with particle sizes (d 0.5) less than 10 μm were obtained. The entrapment of rifampicin in microparticles was up to 72%. In vitro drug release suggested that the crosslinked microparticles showed sustained release for more than 12 hrs. The drug release rate was found to be decreased as the TPP concentration was increased. The microparticles showed a fine particle fraction in the range of 55–63% with mass median aerodynamic diameter (MMAD) values below 3 μm. The in vivo pulmonary absorption of the chitosan microparticles suggested a sustained drug release profile up to 72 hrs with an elimination rate of 0.010 per hr. The studies revealed that the spray-dried porous microparticles have suitable properties to be used as respirable powder in rifampicin delivery to the lungs.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Inhalable microparticles containing large payload of anti-tuberculosis drugs.

          Microparticles containing large payloads of two anti-tuberculosis (TB) drugs were prepared and evaluated for suitability as a dry powder inhalation targeting alveolar macrophages. A solution containing one part each of isoniazid and rifabutin, plus two parts poly(lactic acid) (L-PLA) was spray-dried. Drug content and in vitro release were assayed by HPLC, and DSC was used to elucidate release behaviour. Particle size was measured by laser scattering and aerosol characteristics by cascade impaction using a Lovelace impactor. Microparticles were administered to mice using an in-house inhalation apparatus or by intra-tracheal instillation. Drugs in solution were administered orally and by intra-cardiac injection. Flow cytometry and HPLC were used to investigate the specificity and magnitude of targeting macrophages. Microparticles having drug content approximately 50% (w/w), particle size approximately 5 microm and satisfactory aerosol characteristics (median mass aerodynamic diameter, MMAD=3.57 microm; geometric standard deviation, GSD=1.41 microm; fine particle fraction, FPF( 60%. About 70% of the payload was released in vitro in 10 days. Microparticles targeted macrophages and not epithelial cells on inhalation. Drug concentrations in macrophages were approximately 20 times higher when microparticles were inhaled rather than drug solutions administered. Microparticles were thus deemed suitable for enhanced targeted drug delivery to lung macrophages.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Formulation and in vivo evaluation of chlorhexidine buccal tablets prepared using drug-loaded chitosan microspheres.

            This investigation deals with the development of buccal formulations (tablets) based on chitosan microspheres containing chlorhexidine diacetate. The microparticles were prepared by a spray-drying technique, their morphological characteristics were studied by scanning electron microscopy and the in vitro release behaviour was investigated in pH 7.0 USP buffer. Chlorhexidine in the chitosan microspheres dissolves more quickly in vitro than does chlorhexidine powder. The anti-microbial activity of the microparticles was investigated as minimum inhibitory concentration, minimum bacterial concentration and killing time. The loading of chlorhexidine into chitosan is able to maintain or improve the anti-microbial activity of the drug. The improvement is particularly high against Candida albicans. This is important for a formulation whose potential use is against buccal infections. Drug-empty microparticles have an anti-microbial activity due to the polymer itself. Buccal tablets were prepared by direct compression of the microparticles with mannitol alone or with sodium alginate. After their in vivo administration the determination of chlorhexidine in saliva showed the capacity of these formulations to give a prolonged release of the drug in the buccal cavity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ionotropic cross-linked chitosan microspheres for controlled release of ampicillin.

              The solubility of non cross-linked chitosan in weak acid solutions restricts its utility in microspheres for drug delivery. The primary aim of this study was to produce pentasodium tripolyphosphate cross-linked chitosan microspheres with higher acid resistance for controlled release of ampicillin. The microspheres were prepared by two different microencapsulation procedures (by emulsification and by spray-drying) and characterized by their particle size, surface morphology, stability, drug entrapment efficiency and drug release. The size of the microspheres was <10 microm with a narrow size distribution. The entrapment of ampicillin in the microspheres was more than 80%. Stability of uncross-linked and cross-linked microspheres was affected by the pH of simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 7.5). The inclusion of the enzymes pepsin and pancreatin did not affect the stability of the microspheres. The inclusion of lysozyme in phosphate buffer saline resulted in increased solubilization. The release of the drug was affected by cross-linking of microspheres with tripolyphosphate (TPP). The cross-linked microspheres were more stable in simulated gastric fluid and showed slower but sustained release of ampicillin. The antimicrobial activity of the released ampicillin was confirmed by Staphylococcus aureus bioassay.
                Bookmark

                Author and article information

                Journal
                Sci Pharm
                Sci Pharm
                scipharm
                scipharm
                Scientia Pharmaceutica
                Scientia Pharmaceutica
                0036-8709
                2218-0532
                23 July 2014
                Jul-Sep 2014
                : 82
                : 3
                : 665-681
                Affiliations
                [ 1 ]Indukaka Ipcowala College of Pharmacy, New Vallabh Vidyanagar, Dist. Anand (Gujarat) – 388121, India.
                [ 2 ]A. R. College of Pharmacy and G H Patel Institute of pharmacy, Vallabh Vidyanagar, Dist. Anand (Gujarat) – 388120, India.
                Author notes
                *Corresponding author. E-mail: aliasgar3010@ 123456gmail.com (A. Kundawala)

                This article is available from: http://dx.doi.org/10.3797/scipharm.1307-03

                Article
                10.3797/scipharm.1307-03
                4318219
                25853075
                3e8e70ba-ff39-4e4c-b2a0-985a5a7c4687
                © Kundawala et al.; licensee Österreichische Apotheker-Verlagsgesellschaft m. b. H., Vienna, Austria.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 05 July 2014
                : 23 July 2014
                Categories
                Research Article

                Pharmacology & Pharmaceutical medicine
                microparticles,chitosan,inhalation,sustained release
                Pharmacology & Pharmaceutical medicine
                microparticles, chitosan, inhalation, sustained release

                Comments

                Comment on this article