Blog
About

9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Primordial Nucleosynthesis

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The primordial abundances of deuterium, helium-3, helium-4, and lithium-7 probe the baryon density of the Universe only a few minutes after the Big Bang. Of these relics from the early Universe, deuterium is the baryometer of choice. After reviewing the current observational status of the relic abundances (a moving target!), the baryon density determined by big bang nucleosynthesis (BBN) is derived. The temperature fluctuation spectrum of the cosmic background radiation (CBR), established several hundred thousand years later, probes the baryon density at a completely different epoch in the evolution of the Universe. The excellent agreement between the BBN- and CBR-determined baryon densities provides impressive confirmation of the standard model of cosmology, permitting the study of extensions of the standard model. In combination with the BBN- and/or CBR-determined baryon density, the relic abundance of 4He provides an excellent chronometer, constraining those extensions of the standard model which lead to a nonstandard early-Universe expansion rate.

          Related collections

          Author and article information

          Journal
          28 August 2003
          2003-10-13
          Article
          astro-ph/0308511
          Custom metadata
          To appear in the proceedings of the May 2003 STScI Symposium, ``The Local Group as an Astrophysical Laboratory''; 17 pages, 11 figures. Figure 7 replaced; references updated
          astro-ph

          Comments

          Comment on this article