0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bisphosphonates attenuate age‐related muscle decline in Caenorhabditis elegans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Age‐related muscle decline (sarcopenia) associates with numerous health risk factors and poor quality of life. Drugs that counter sarcopenia without harmful side effects are lacking, and repurposing existing pharmaceuticals could expedite realistic clinical options. Recent studies suggest bisphosphonates promote muscle health; however, the efficacy of bisphosphonates as an anti‐sarcopenic therapy is currently unclear.

          Methods

          Using Caenorhabditis elegans as a sarcopenia model, we treated animals with 100 nM, 1, 10, 100 and 500 μM zoledronic acid (ZA) and assessed lifespan and healthspan (movement rates) using a microfluidic chip device. The effects of ZA on sarcopenia were examined using GFP‐tagged myofibres or mitochondria at days 0, 4 and 6 post‐adulthood. Mechanisms of ZA‐mediated healthspan extension were determined using combined ZA and targeted RNAi gene knockdown across the life‐course.

          Results

          We found 100 nM and 1 μM ZA increased lifespan ( P < 0.001) and healthspan [954 ± 53 (100 nM) and 963 ± 48 (1 μM) vs. 834 ± 59% (untreated) population activity AUC, P < 0.05]. 10 μM ZA shortened lifespan ( P < 0.0001) but not healthspan (758.9 ± 37 vs. 834 ± 59, P > 0.05), whereas 100 and 500 μM ZA were larval lethal. ZA (1 μM) significantly improved myofibrillar structure on days 4 and 6 post‐adulthood (83 and 71% well‐organized myofibres, respectively, vs. 56 and 34% controls, P < 0.0001) and increased well‐networked mitochondria at day 6 (47 vs. 16% in controls, P < 0.01). Genes required for ZA‐mediated healthspan extension included fdps‐1/FDPS‐1 (278 ± 9 vs. 894 ± 17% population activity AUC in knockdown + 1 μM ZA vs. untreated controls, respectively, P < 0.0001), daf‐16/FOXO (680 ± 16 vs. 894 ± 17%, P < 0.01) and agxt‐2/BAIBA (531 ± 23 vs. 552 ± 8%, P > 0.05). Life/healthspan was extended through knockdown of igdb‐1/FNDC5 (635 ± 10 vs. 523 ± 10% population activity AUC in gene knockdown vs. untreated controls, P < 0.01) and sir‐2.3/SIRT‐4 (586 ± 10 vs. 523 ± 10%, P < 0.05), with no synergistic improvements in ZA co‐treatment vs. knockdown alone [651 ± 12 vs. 635 ± 10% ( igdb‐1/FNDC5) and 583 ± 9 vs. 586 ± 10% ( sir‐2.3/SIRT‐4), both P > 0.05]. Conversely, let‐756/FGF21 and sir‐2.2/SIRT‐4 were dispensable for ZA‐induced healthspan [630 ± 6 vs. 523 ± 10% population activity AUC in knockdown + 1 μM ZA vs. untreated controls, P < 0.01 ( let‐756/FGF21) and 568 ± 9 vs. 523 ± 10%, P < 0.05 ( sir‐2.2/SIRT‐4)].

          Conclusions

          Despite lacking an endoskeleton, ZA delays Caenorhabditis elegans sarcopenia, which translates to improved neuromuscular function across the life course. Bisphosphonates might, therefore, be an immediately exploitable anti‐sarcopenia therapy.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies

          Background Sarcopenia, an age-related decline in muscle mass and function, is one of the most important health problems in elderly with a high rate of adverse outcomes. However, several studies have investigated the prevalence of sarcopenia in the world, the results have been inconsistent. The current systematic review and meta- analysis study was conducted to estimate the overall prevalence of sarcopenia in both genders in different regions of the world. Methods Electronic databases, including MEDLINE (via PubMed), SCOPUS and Web of Science were searched between January 2009 and December 2016. The population- based studies that reported the prevalence of sarcopenia in healthy adults aged ≥ 60 years using the European Working Group on Sarcopenia in Older People (EWGSOP), the International Working Group on Sarcopenia (IWGS) and Asian Working Group for Sarcopenia (AWGS) definitions, were selected. According to these consensual definitions, sarcopenia was defined by presence of low muscle mass (adjusted appendicular muscle mass for height) and muscle strength (handgrip strength) or physical performance (the usual gait speed). The random effect model was used for estimation the prevalence of sarcopenia. The sex-specific prevalence of sarcopenia and 95% confidence interval (CI) were calculated using the Binomial Exact Method. Heterogeneity was assessed by subgroup analysis. Results Thirty- five articles met our inclusion criteria, with a total of 58404 individuals. The overall estimates of prevalence was 10% (95% CI: 8-12%) in men and 10% (95% CI: 8-13%) in women, respectively. The prevalence was higher among non- Asian than Asian individuals in both genders especially, when the Bio-electrical Impedance Analysis (BIA) was used to measure muscle mass (19% vs 10% in men; 20% vs 11% in women). Conclusion Despite the differences encountered between the studies, regarding diagnostic tools used to measure of muscle mass and different regions of the world for estimating parameters of sarcopenia, present systematic review revealed that a substantial proportion of the old people has sarcopenia, even in healthy populations. However, sarcopenia is as a consequence of the aging progress, early diagnosis can prevent some adverse outcomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bisphosphonates: mechanism of action and role in clinical practice.

            Bisphosphonates are primary agents in the current pharmacological arsenal against osteoclast-mediated bone loss due to osteoporosis, Paget disease of bone, malignancies metastatic to bone, multiple myeloma, and hypercalcemia of malignancy. In addition to currently approved uses, bisphosphonates are commonly prescribed for prevention and treatment of a variety of other skeletal conditions, such as low bone density and osteogenesis imperfecta. However, the recent recognition that bisphosphonate use is associated with pathologic conditions including osteonecrosis of the jaw has sharpened the level of scrutiny of the current widespread use of bisphosphonate therapy. Using the key words bisphosphonate and clinical practice in a PubMed literature search from January 1, 1998, to May 1, 2008, we review current understanding of the mechanisms by which bisphosphonates exert their effects on osteoclasts, discuss the role of bisphosphonates in clinical practice, and highlight some areas of concern associated with bisphosphonate use.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mevalonate pathway: a review of clinical and therapeutical implications.

              Mevalonate pathway is an important metabolic pathway which plays a key role in multiple cellular processes by synthesizing sterol isoprenoids, such as cholesterol, and non-sterol isoprenoids, such as dolichol, heme-A, isopentenyl tRNA and ubiquinone. While extensively studied in regard with cholesterol synthesis and its implications in cardiovascular diseases, in recent years the mevalonate pathway has become a challenging and, in the meantime, fascinating topic, when a large number of experimental and clinical studies suggested that inhibition of non-sterol isoprenoids might have valuable interest in human pathology. These molecules that are essential for cell growth and differentiation appear to be potential interesting therapeutic targets for many areas of ongoing research: oncology, autoimmune disorders, atherosclerosis, and Alzheimer disease. Also, considerable progress has been made in the past decade in understanding the pathophysiology of two auto-inflammatory disorders resulting from an inherited deficiency of mevalonate kinase, the first committed enzyme of the mevalonate pathway. Here we present a brief description of the biochemistry of the mevalonate pathway, together with a review of the current knowledge of the clinical and therapeutical implications of this fascinating and complex metabolic pathway.
                Bookmark

                Author and article information

                Contributors
                t.etheridge@exeter.ac.uk
                Journal
                J Cachexia Sarcopenia Muscle
                J Cachexia Sarcopenia Muscle
                10.1007/13539.2190-6009
                JCSM
                Journal of Cachexia, Sarcopenia and Muscle
                John Wiley and Sons Inc. (Hoboken )
                2190-5991
                2190-6009
                18 September 2023
                December 2023
                : 14
                : 6 ( doiID: 10.1002/jcsm.v14.6 )
                : 2613-2622
                Affiliations
                [ 1 ] University of Exeter Medical School Exeter UK
                [ 2 ] Faculty of Health and Life Sciences University of Exeter Exeter UK
                [ 3 ] Centre of Metabolism, Ageing & Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of Medicine University of Nottingham Derby UK
                [ 4 ] Ohio Musculoskeletal and Neurological Institute Heritage College of Osteopathic Medicine Athens OH USA
                Author notes
                [*] [* ]Correspondence to: Timothy Etheridge, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK. Email: t.etheridge@ 123456exeter.ac.uk
                Author information
                https://orcid.org/0000-0001-7660-7392
                Article
                JCSM13335 JCSM-D-23-00179
                10.1002/jcsm.13335
                10751425
                37722921
                3ebb2952-2aa8-4875-8504-bbb251a88da7
                © 2023 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by Wiley Periodicals LLC.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 July 2023
                : 17 March 2023
                : 21 August 2023
                Page count
                Figures: 5, Tables: 0, Pages: 10, Words: 5037
                Funding
                Funded by: United Mitochondrial Disease Foundation , doi 10.13039/100009282;
                Award ID: PI‐19‐0985
                Funded by: University of Exeter Diamond Jubilee Scholarship
                Funded by: US Army Research Office
                Award ID: 74014‐LS
                Funded by: Medical Research Council, UK , doi 10.13039/501100000265;
                Award ID: MR/P021220/1
                Funded by: NASA , doi 10.13039/100000104;
                Award ID: NSSC22K0278
                Award ID: NSSC22K0250
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                December 2023
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.3.6 mode:remove_FC converted:27.12.2023

                Orthopedics
                healthspan,lifespan,muscle,sarcopenia,zoledronic acid
                Orthopedics
                healthspan, lifespan, muscle, sarcopenia, zoledronic acid

                Comments

                Comment on this article