Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Real-time computing without stable states: a new framework for neural computation based on perturbations.

          A key challenge for neural modeling is to explain how a continuous stream of multimodal input from a rapidly changing environment can be processed by stereotypical recurrent circuits of integrate-and-fire neurons in real time. We propose a new computational model for real-time computing on time-varying input that provides an alternative to paradigms based on Turing machines or attractor neural networks. It does not require a task-dependent construction of neural circuits. Instead, it is based on principles of high-dimensional dynamical systems in combination with statistical learning theory and can be implemented on generic evolved or found recurrent circuitry. It is shown that the inherent transient dynamics of the high-dimensional dynamical system formed by a sufficiently large and heterogeneous neural circuit may serve as universal analog fading memory. Readout neurons can learn to extract in real time from the current state of such recurrent neural circuit information about current and past inputs that may be needed for diverse tasks. Stable internal states are not required for giving a stable output, since transient internal states can be transformed by readout neurons into stable target outputs due to the high dimensionality of the dynamical system. Our approach is based on a rigorous computational model, the liquid state machine, that, unlike Turing machines, does not require sequential transitions between well-defined discrete internal states. It is supported, as the Turing machine is, by rigorous mathematical results that predict universal computational power under idealized conditions, but for the biologically more realistic scenario of real-time processing of time-varying inputs. Our approach provides new perspectives for the interpretation of neural coding, the design of experiments and data analysis in neurophysiology, and the solution of problems in robotics and neurotechnology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication.

            We present a method for learning nonlinear systems, echo state networks (ESNs). ESNs employ artificial recurrent neural networks in a way that has recently been proposed independently as a learning mechanism in biological brains. The learning method is computationally efficient and easy to use. On a benchmark task of predicting a chaotic time series, accuracy is improved by a factor of 2400 over previous techniques. The potential for engineering applications is illustrated by equalizing a communication channel, where the signal error rate is improved by two orders of magnitude.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations

                Bookmark

                Author and article information

                Journal
                Chaos: An Interdisciplinary Journal of Nonlinear Science
                Chaos
                AIP Publishing
                1054-1500
                1089-7682
                April 2018
                April 2018
                : 28
                : 4
                : 041101
                Affiliations
                [1 ]University of Maryland, College Park, Maryland 20742, USA
                [2 ]Rice University, Houston, Texas 77005, USA
                [3 ]Haverford College, Haverford, Pennsylvania 19041, USA
                Article
                10.1063/1.5028373
                31906641
                3f32031e-8cda-4475-a164-731e53eb8ca2
                © 2018

                https://publishing.aip.org/authors/rights-and-permissions

                History

                Comments

                Comment on this article