17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Accuracy and feasibility of point-of-care and continuous blood glucose analysis in critically ill ICU patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          To obtain strict glucose regulation, an accurate and feasible bedside glucometry method is essential. We evaluated three different types of point-of-care glucometry in seriously ill intensive care unit (ICU) patients. The study was performed as a single-centre, prospective, observational study in a 12-bed medical ICU of a university hospital.

          Methods

          Patients with an expected ICU stay of more than 48 hours were included. Because the reference laboratory delivers glucose values after approximately 30 to 60 minutes, which is too slow to use in a glucose regulation protocol and for calibration of the subcutaneous continuous glucose monitoring system (CGMS) (CGMS System Gold), we first validated the ICU-based blood gas/glucose analyser ABL715 (part 1 of the study). Subsequently, part 2 was performed: after inserting (and calibrating) the subcutaneous CGMS, heparinised arterial blood samples were drawn from an arterial line every 6 hours and analysed on both the Precision PCx point-of-care meter using test strips and on the blood gas/glucose analyser ABL715. CGMS glucose data were downloaded after 24 to 72 hours. The results of the paired measurements were analysed as a scatter plot by the method of Bland and Altman and were expressed as a correlation coefficient.

          Results

          Part 1: Four hundred and twenty-four blood samples were drawn from 45 critically ill ICU patients. The ICU-based blood gas/glucose analyser ABL715 provided a good estimate of conventional laboratory glucose assessment: the correlation coefficient was 0.95. In the Clarke error grid, 96.8% of the paired measurements were in the clinically acceptable zones A and B. Part 2: One hundred sixty-five paired samples were drawn from 19 ICU patients. The Precision PCx point-of-care meter showed a correlation coefficient of 0.89. Ninety-eight point seven percent of measurements were within zones A and B. The correlation coefficient for the subcutaneous CGMS System Gold was 0.89. One hundred percent of measurements were within zones A and B.

          Conclusion

          The ICU-based blood glucose analyser ABL715 is a rapid and accurate alternative for laboratory glucose determination and can serve as a standard for ICU blood glucose measurements. The Precision PCx is a good alternative, but feasibility may be limited because of the blood sample handling. The subcutaneous CGMS System Gold is promising, but real-time glucose level reporting is necessary before it can be of clinical use in the ICU. When implementing a glucose-insulin algorithm in patient care or research, one should realise that the absolute glucose level may differ systematically among various measuring methods, influencing targeted glucose levels.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Statistical methods for assessing agreement between two methods of clinical measurement.

          In clinical measurement comparison of a new measurement technique with an established one is often needed to see whether they agree sufficiently for the new to replace the old. Such investigations are often analysed inappropriately, notably by using correlation coefficients. The use of correlation is misleading. An alternative approach, based on graphical techniques and simple calculations, is described, together with the relation between this analysis and the assessment of repeatability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acute hyperglycemia and the innate immune system: clinical, cellular, and molecular aspects.

            To extract from the biomedical literature the reported effects of acute hyperglycemia on the major components of the innate immune system and to describe the clinical benefits of strict blood glucose control in certain patients. A Medline/PubMed search (1966 to July 2004) with manual cross-referencing was conducted, including all relevant articles investigating the effects of acutely elevated glucose levels on innate immunity. All publication types, languages, or subsets were searched. Original and selected review articles, short communications, letters to the editor, and chapters of selected textbooks were extracted. Most recent and relevant clinical trials were reviewed for the introductory section to provide the clinical background to this topic. The selected bench laboratory articles were then divided into three main categories based on the timing of events: a) the early phase of the innate immune reaction; b) the cytokine network; and c) the phagocytic phase. The most obvious findings related to hyperglycemia included reduced neutrophil activity (e.g., chemotaxis, formation of reactive oxygen species, phagocytosis of bacteria), despite accelerated diapedesis of leukocytes into peripheral tissue, as well as specific alterations of cytokine patterns with increased concentrations of the early proinflammatory cytokines tumor necrosis factor-alpha and interleukin-6. Furthermore, a reduction of endothelial nitric oxide formation takes place, thus decreasing microvascular reactivity to dilating agents such as bradykinin, and complement function (e.g., opsonization, chemotaxis) is impaired, despite elevations of certain complement factors. Acute, short-term hyperglycemia affects all major components of innate immunity and impairs the ability of the host to combat infection, even though certain distinctive proinflammatory alterations of the immune response can be observed under these conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Implementation of a safe and effective insulin infusion protocol in a medical intensive care unit.

              In a recent randomized controlled trial, lowering blood glucose levels to 80-110 mg/dl improved clinical outcomes in critically ill patients. In that study, the insulin infusion protocol (IIP) used to normalize blood glucose levels provided valuable guidelines for adjusting insulin therapy. In our hands, however, ongoing expert supervision was required to effectively manage the insulin infusions. This work describes our early experience with a safe, effective, nurse-implemented IIP that provides detailed insulin dosing instructions and requires minimal physician input. We collected data from 52 medical intensive care unit (MICU) patients who were placed on the IIP. Blood glucose levels were the primary outcome measurement. Relevant clinical variables and insulin requirements were also recorded. MICU nurses were surveyed regarding their experience with the IIP. To date, our IIP has been employed 69 times in 52 patients admitted to an MICU. Using the IIP, the median time to reach target blood glucose levels (100-139 mg/dl) was 9 h. Once blood glucose levels fell below 140 mg/dl, 52% of 5,808 subsequent hourly blood glucose values fell within our narrow target range; 66% within a "clinically desirable" range of 80-139 mg/dl; and 93% within a "clinically acceptable" range of 80-199 mg/dl. Only 20 (0.3%) blood glucose values were <60 mg/dl, none of which resulted in clinically significant adverse events. In general, the IIP was readily accepted by our MICU nursing staff, most of whom rated the protocol as both clinically effective and easy to use. Our nurse-implemented IIP is safe and effective in improving glycemic control in critically ill patients.
                Bookmark

                Author and article information

                Journal
                Crit Care
                Critical Care
                BioMed Central (London )
                1364-8535
                1466-609X
                2006
                18 September 2006
                : 10
                : 5
                : R135
                Affiliations
                [1 ]Department of Anesthesiology, University Medical Center Groningen, P.O. Box 30.001, NL-9700 RB, Groningen, The Netherlands
                [2 ]Intensive & Respiratory Care Unit (ICB), University Medical Center Groningen, P.O. Box 30.001, NL-9700 RB, Groningen, The Netherlands
                [3 ]Department of Cardiology, University Medical Center Groningen, P.O. Box 30.001, NL-9700 RB Groningen, The Netherlands
                Article
                cc5048
                10.1186/cc5048
                1751062
                16981981
                3fa7b053-8fca-421a-a5ea-089478110e73
                Copyright © 2006 Corstjens et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 March 2006
                : 19 April 2006
                : 22 August 2006
                : 18 September 2006
                Categories
                Research

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article