35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Cretaceous eutriconodont and integument evolution in early mammals

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The earliest known eutherian mammal.

          The skeleton of a eutherian (placental) mammal has been discovered from the Lower Cretaceous Yixian Formation of northeastern China. We estimate its age to be about 125 million years (Myr), extending the date of the oldest eutherian records with skull and skeleton by about 40 50 Myr. Our analyses place the new fossil at the root of the eutherian tree and among the four other known Early Cretaceous eutherians, and suggest an earlier and greater diversification of stem eutherians that occurred well before the molecular estimate for the diversification of extant placental superorders (104 64 Myr). The new eutherian has limb and foot features that are known only from scansorial (climbing) and arboreal (tree-living) extant mammals, in contrast to the terrestrial or cursorial (running) features of other Cretaceous eutherians. This suggests that the earliest eutherian lineages developed different locomotory adaptations, facilitating their spread to diverse niches in the Cretaceous.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new eutriconodont mammal and evolutionary development in early mammals.

            Detachment of the three tiny middle ear bones from the reptilian mandible is an important innovation of modern mammals. Here we describe a Mesozoic eutriconodont nested within crown mammals that clearly illustrates this transition: the middle ear bones are connected to the mandible via an ossified Meckel's cartilage. The connected ear and jaw structure is similar to the embryonic pattern in modern monotremes (egg-laying mammals) and placental mammals, but is a paedomorphic feature retained in the adult, unlike in monotreme and placental adults. This suggests that reversal to (or retention of) this premammalian ancestral condition is correlated with different developmental timing (heterochrony) in eutriconodonts. This new eutriconodont adds to the evidence of homoplasy of vertebral characters in the thoraco-lumbar transition and unfused lumbar ribs among early mammals. This is similar to the effect of homeobox gene patterning of vertebrae in modern mammals, making it plausible to extrapolate the effects of Hox gene patterning to account for homoplastic evolution of vertebral characters in early mammals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Late Jurassic digging mammal and early mammalian diversification.

              A fossil mammal from the Late Jurassic Morrison Formation, Colorado, has highly specialized teeth similar to those of xenarthran and tubulidentate placental mammals and different from the generalized insectivorous or omnivorous dentitions of other Jurassic mammals. It has many forelimb features specialized for digging, and its lumbar vertebrae show xenarthrous articulations. Parsimony analysis suggests that this fossil represents a separate basal mammalian lineage with some dental and vertebral convergences to those of modern xenarthran placentals, and reveals a previously unknown ecomorph of early mammals.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                October 2015
                October 14 2015
                October 2015
                : 526
                : 7573
                : 380-384
                Article
                10.1038/nature14905
                26469049
                4009990d-a933-467a-a5c4-aefd1da46613
                © 2015

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article