33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gastrostomy Tube Insertion in Pediatric Patients With Autosomal Recessive Polycystic Kidney Disease (ARPKD): Current Practice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction: Autosomal recessive polycystic kidney disease (ARPKD) is a severe hepatorenal disorder of childhood. Early renal disease in ARPKD may require renal replacement therapy and is associated with failure to thrive resulting in a need for nasogastric tube feeding or gastrostomy. In ARPKD patients, the benefit of a gastrostomy in nutrition and growth needs to be weighed against the potential risk of complications of congenital hepatic fibrosis (CHF) and portal hypertension like variceal bleeding. CHF in ARPKD has thus been considered as a relative contraindication for gastrostomy insertion. Yet, data on gastrostomies in pediatric patients with ARPKD is lacking.

          Methods: We conducted a web-based survey study among pediatric nephrologists, pediatric hepatologists and pediatric gastroenterologists on their opinions on and experiences with gastrostomy insertion in ARPKD patients.

          Results: 196 participants from 39 countries shared their opinion. 45% of participants support gastrostomy insertion in all ARPKD patients, but portal hypertension is considered to be a contraindication by a subgroup of participants. Patient-specific data was provided for 38 patients indicating complications of gastrostomy that were in principal comparable to non-ARPKD patients. Bleeding episodes were reported in 3/38 patients (7.9%). Two patients developed additional severe complications. Gastrostomy was retrospectively considered as the right decision for the patient in 35/38 (92.1%) of the cases.

          Conclusions: This report on the results of an online survey gives first insights into the clinical practice of gastrostomy insertion in ARPKD patients. For the majority of participating physicians benefits of gastrostomy insertion retrospectively outweigh complications and risks. More data will be required to lay the foundation for clinical recommendations.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Autosomal recessive polycystic kidney disease: the clinical experience in North America.

          We designed a longitudinal clinical database for autosomal recessive polycystic kidney disease (ARPKD), recruited patients from pediatric nephrology centers in the United States and Canada, and examined their clinical morbidities and survival characteristics. We initially targeted enrollment to children who were born and diagnosed after January 1, 1990, so as to capture a cohort that is representative of ARPKD patients born in the last decade. When a significant number of older ARPKD patients were also referred, we extended our database to include all patients who met our inclusion criteria, thereby allowing direct comparisons between a long-term survivor subset and a cohort that included both neonatal survivors and nonsurvivors. Patient entry into our database required either compatible histopathology or ultrasonographic evidence of enlarged, echogenic kidneys and the presence of at least 1 of the following additional criteria: a) biopsy-proven ARPKD in a sibling; b) biliary fibrosis based on either clinical or histopathologic evidence; c) no sonographic evidence of renal cysts in the parents (parents must be >30 years of age); or d) parental consanguinity, eg, first-cousin marriage. Clinical questionnaires (primary data form and follow-up data form) were developed to collect initial patient data and follow-up data at yearly intervals. Thirty-four centers provided clinical information for 254 patients and of these, 209 had sufficient data for analyses. When stratified by date of birth, 166 (79.4%) were born on or after January 1, 1990 (younger cohort) and 43 children (20.6%) were born before 1990 (older cohort). The gender distribution was equal in both cohorts. The median age at diagnosis was significantly later in the older cohort and no deaths were reported among these patients, suggesting that this group is biased toward long-term survivors. In the younger cohort, 74.7% of the patients are alive, with a median age of 5.4 years. In this group, 40.5% of patients required ventilation and 11.6% developed chronic lung disease. Hypertension was a common, but not universal finding in both cohorts. The relative risk for developing hypertension was higher in the older cohort, but the median age at diagnosis was significantly earlier in the younger cohort. Chronic renal insufficiency (CRI) was reported in approximately 40% of patients with no significant difference in the relative risk between age groups. However, in the younger cohort, the median age at diagnosis was significantly earlier and the age of diagnosis of CRI and hypertension were significantly correlated. Clinically significant morbidities related to periportal fibrosis were more common in the older cohort. There was a trend toward increasing frequency of portal hypertension with age in both cohorts. Portal hypertension was not significantly correlated with either systemic hypertension or CRI. The ARPKD Clinical Database represents the largest single cohort of ARPKD patients collected to date. Our initial data analysis provides several new clinical insights. First, in our subset of long-term survivors, ARPKD has a slower rate of disease progression, as assessed by age of ARPKD diagnosis, as well as age of diagnosis of clinical morbidities. Second, neonatal ventilation was strongly predictive of mortality as well as an earlier age of diagnosis in those who developed hypertension or chronic renal insufficiency. However, for infants who survive the perinatal period, the long-term prognosis for patient survival is much better than generally perceived. Third, although systemic hypertension and CRI were significantly correlated with respect to age of diagnosis, similar relationships with portal hypertension were not evident, suggesting that disease progression may have organ-specific patterns. Fourth, only a subset of patients may be at risk for developing clinically significant manifestations of periportal fibrosis. Based on these observations, the next challenges will be to determine how various factors, such as specific mutations in the ARPKD gene, PKHD1(polycystic kidney and hepatic disease 1), variations in modifying gene loci, modulation by as yet unspecified environmental factors, and/or gene-environment interactions contribute to the marked variability in survival and disease expression observed among ARPKD patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD).

            The autosomal recessive form of polycystic kidney disease (ARPKD) is generally considered an infantile disorder with the typical presentation of greatly enlarged echogenic kidneys detected in utero or within the neonatal period, often resulting in neonatal demise. However, there is an increasing realization that survivors often thrive into adulthood with complications of the ductal plate malformation, manifesting as congenital hepatic fibrosis and Caroli disease, becoming prominent. Previous natural history studies have concentrated almost exclusively on the infantile presenting group. However, developments in understanding the genetic basis of ARPKD, through identification of the disease gene, PKHD1, have allowed exploration of the etiology in patients with ARPKD-like disease or congenital hepatic fibrosis presenting later in childhood or as adults. In the current study we retrospectively reviewed the clinical records, and where possible performed PKHD1 mutation screening, in patients diagnosed with ARPKD or congenital hepatic fibrosis at the Mayo Clinic, Rochester, MN, from 1961 to 2004. Of a total of 133 cases reviewed, 65 were considered to meet the diagnostic criteria with an average duration of follow-up of 8.6 +/- 6.4 years. Fifty-five cases had ARPKD and 10 had isolated congenital hepatic fibrosis with no or minimal renal involvement. The patients were analyzed as 3 groups categorized by the age at diagnosis; 20 years (n = 20). The presenting feature in the neonates was typically associated with renal enlargement, but in the older groups, more often involved manifestations of liver disease, including hepatosplenomegaly, hypersplenism, variceal bleeding, and cholangitis. During follow-up, 22 patients had renal insufficiency and 8 developed end-stage renal disease (ESRD), most from the neonatal group. Liver disease was evident on follow-up in all diagnostic groups but particularly prevalent in those diagnosed later in life. A total of 12 patients died, 6 in the neonatal period, but 86% of patients were alive at 40 years of age. The likelihood of being alive without ESRD differed significantly between the diagnostic groups with 36%, 80%, and 88% survival in the 3 diagnostic groups, respectively, 20 years after the diagnosis. Considerable evidence of intrafamilial phenotype variability was observed. Mutation analysis was performed in 31 families and at least 1 mutation was detected in 25 (81%), with 76% of mutant alleles detected in those cases. Consistent with the relatively mild disease manifestations in this population, the majority of changes were missense (79%) and no case had 2 truncating changes. Mutations were detected in all diagnostic groups, indicating that congenital hepatic fibrosis with minimal kidney involvement can result from PKHD1 mutation. The finding of 6 cases with no detected mutations may represent missed mutations or possible evidence of genetic heterogeneity. The current study indicates a broadened spectrum for the ARPKD phenotype and that later presenting cases with predominant liver disease should be considered part of ARPKD.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Consensus guidelines for the prevention and treatment of catheter-related infections and peritonitis in pediatric patients receiving peritoneal dialysis: 2012 update.

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pediatr
                Front Pediatr
                Front. Pediatr.
                Frontiers in Pediatrics
                Frontiers Media S.A.
                2296-2360
                04 June 2018
                2018
                : 6
                : 164
                Affiliations
                [1] 1Department of Pediatrics, University Hospital of Cologne , Cologne, Germany
                [2] 2Great Ormond Street Hospital for Children NHS Foundation Trust , London, United Kingdom
                [3] 3Department of Pediatric Gastroenterology and Hepatology, University Hospitals Leuven , Leuven, Belgium
                [4] 4Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University of Heidelberg , Heidelberg, Germany
                [5] 5Department of Pediatric Nephrology, University Hospitals Leuven , Leuven, Belgium
                [6] 6PKD Research Group, Department of Development and Regeneration, KU Leuven, University of Leuven , Leuven, Belgium
                [7] 7Center for Molecular Medicine, University Hospital of Cologne , Cologne, Germany
                Author notes

                Edited by: Katherine MacRae Dell, Case Western Reserve University, United States

                Reviewed by: Praveen Kumar Conjeevaram Selvakumar, Cleveland Clinic, United States; Vera Hermina Koch, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil

                *Correspondence: Max C. Liebau max.liebau@ 123456uk-koeln.de

                This article was submitted to Pediatric Nephrology, a section of the journal Frontiers in Pediatrics

                Article
                10.3389/fped.2018.00164
                5994991
                407c4700-81a4-428c-856b-242af2279cda
                Copyright © 2018 Burgmaier, Brandt, Shroff, Witters, Weber, Dötsch, Schaefer, Mekahli and Liebau.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 January 2018
                : 15 May 2018
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 24, Pages: 8, Words: 5125
                Funding
                Funded by: Bundesministerium für Bildung und Forschung 10.13039/501100002347
                Award ID: 01GM1515
                Award ID: 01KN1106
                Categories
                Pediatrics
                Original Research

                arpkd,congenital hepatic fibrosis,portal hypertension,peritoneal dialysis,pkhd1,pediatric polycystic kidney disease

                Comments

                Comment on this article