Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
39
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Drugs in development for toxoplasmosis: advances, challenges, and current status

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Toxoplasma gondii causes fatal and debilitating brain and eye diseases. Medicines that are currently used to treat toxoplasmosis commonly have toxic side effects and require prolonged courses that range from weeks to more than a year. The need for long treatment durations and the risk of relapsing disease are in part due to the lack of efficacy against T. gondii tissue cysts. The challenges for developing a more effective treatment for toxoplasmosis include decreasing toxicity, achieving therapeutic concentrations in the brain and eye, shortening duration, eliminating tissue cysts from the host, safety in pregnancy, and creating a formulation that is inexpensive and practical for use in resource-poor areas of the world. Over the last decade, significant progress has been made in identifying and developing new compounds for the treatment of toxoplasmosis. Unlike clinically used medicines that were repurposed for toxoplasmosis, these compounds have been optimized for efficacy against toxoplasmosis during preclinical development. Medicines with enhanced efficacy as well as features that address the unique aspects of toxoplasmosis have the potential to greatly improve toxoplasmosis therapy. This review discusses the facets of toxoplasmosis that are pertinent to drug design and the advances, challenges, and current status of preclinical drug research for toxoplasmosis.

          Most cited references154

          • Record: found
          • Abstract: found
          • Article: not found

          Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis.

          Toxoplasma gondii's importance for humans refers mainly to primary infection during pregnancy, resulting in abortion/stillbirth or congenital toxoplasmosis. The authors sought to evaluate the current global status of T. gondii seroprevalence and its correlations with risk factors, environmental and socioeconomic parameters. Literature published during the last decade on toxoplasmosis seroprevalence, in women who were pregnant or of childbearing age, was retrieved. A total of 99 studies were eligible; a further 36 studies offered seroprevalence data from regions/countries for which no data on pregnancy/childbearing age were available. Foci of high prevalence exist in Latin America, parts of Eastern/Central Europe, the Middle East, parts of south-east Asia and Africa. Regional seroprevalence variations relate to individual subpopulations' religious and socioeconomic practices. A trend towards lower seroprevalence is observed in many European countries and the United States of America (USA). There is no obvious climate-related gradient, excluding North and Latin America. Immigration has affected local prevalence in certain countries. We further sought to recognise specific risk factors related to seropositivity; however, such risk factors are not reported systematically. Population awareness may affect recognition of said risks. Global toxoplasmosis seroprevalence is continuingly evolving, subject to regional socioeconomic parameters and population habits. Awareness of these seroprevalence trends, particularly in the case of women of childbearing age, may allow proper public health policies to be enforced, targeting in particular seronegative women of childbearing age in high seroprevalence areas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spiroindolones, a potent compound class for the treatment of malaria.

            Recent reports of increased tolerance to artemisinin derivatives--the most recently adopted class of antimalarials--have prompted a need for new treatments. The spirotetrahydro-beta-carbolines, or spiroindolones, are potent drugs that kill the blood stages of Plasmodium falciparum and Plasmodium vivax clinical isolates at low nanomolar concentration. Spiroindolones rapidly inhibit protein synthesis in P. falciparum, an effect that is ablated in parasites bearing nonsynonymous mutations in the gene encoding the P-type cation-transporter ATPase4 (PfATP4). The optimized spiroindolone NITD609 shows pharmacokinetic properties compatible with once-daily oral dosing and has single-dose efficacy in a rodent malaria model.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA gyrase, topoisomerase IV, and the 4-quinolones.

              For many years, DNA gyrase was thought to be responsible both for unlinking replicated daughter chromosomes and for controlling negative superhelical tension in bacterial DNA. However, in 1990 a homolog of gyrase, topoisomerase IV, that had a potent decatenating activity was discovered. It is now clear that topoisomerase IV, rather than gyrase, is responsible for decatenation of interlinked chromosomes. Moreover, topoisomerase IV is a target of the 4-quinolones, antibacterial agents that had previously been thought to target only gyrase. The key event in quinolone action is reversible trapping of gyrase-DNA and topoisomerase IV-DNA complexes. Complex formation with gyrase is followed by a rapid, reversible inhibition of DNA synthesis, cessation of growth, and induction of the SOS response. At higher drug concentrations, cell death occurs as double-strand DNA breaks are released from trapped gyrase and/or topoisomerase IV complexes. Repair of quinolone-induced DNA damage occurs largely via recombination pathways. In many gram-negative bacteria, resistance to moderate levels of quinolone arises from mutation of the gyrase A protein and resistance to high levels of quinolone arises from mutation of a second gyrase and/or topoisomerase IV site. For some gram-positive bacteria, the situation is reversed: primary resistance occurs through changes in topoisomerase IV while gyrase changes give additional resistance. Gyrase is also trapped on DNA by lethal gene products of certain large, low-copy-number plasmids. Thus, quinolone-topoisomerase biology is providing a model for understanding aspects of host-parasite interactions and providing ways to investigate manipulation of the bacterial chromosome by topoisomerases.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2017
                25 January 2017
                : 11
                : 273-293
                Affiliations
                [1 ]Division of Infectious Diseases, Oregon Health & Science University
                [2 ]Portland Veterans Affairs Medical Center, Portland, OR, USA
                Author notes
                Correspondence: Joseph Stone Doggett, Veterans Affairs Medical Center, 3710 Southwest US Veterans Hospital Road, Portland, OR 97239, USA, Tel +1 503 220 8262, Email doggettj@ 123456ohsu.edu
                Article
                dddt-11-273
                10.2147/DDDT.S60973
                5279849
                28182168
                41595080-aa9e-4913-8be0-bdff68099fdd
                © 2017 Alday and Doggett. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                toxoplasma gondii,therapeutics,preclinical medicine,experimental medicine,mechanism of action,apicomplexa

                Comments

                Comment on this article