8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A practical guide for inferring reliable dominance hierarchies and estimating their uncertainty

      Preprint
      , ,
      bioRxiv

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many animal social structures are organized hierarchically, with dominant individuals monopolizing resources. Dominance hierarchies have received great attention from behavioural and evolutionary ecologists. As a result, there are many methods for inferring hierarchies from social interactions. Yet, there are no clear guidelines about how many observed dominance interactions (i.e. sampling effort) are necessary for inferring reliable dominance hierarchies, nor are there any established tools for quantifying their uncertainty. In this study, we simulated interactions (winners and losers) in scenarios of varying steepness (the probability that a dominant defeats a subordinate based on their difference in rank). Using these data, we (1) quantify how the number of interactions recorded and hierarchy steepness affect the performance of three methods, (2) propose an amendment that improves the performance of a popular method, and (3) suggest two easy procedures to measure uncertainty in the inferred hierarchy. First, we found that the ratio of interactions to individuals required to infer reliable hierarchies is surprisingly low, but depends on the hierarchy steepness and method used. We then show that David's score and our novel randomized Elo-rating are the two best methods, whereas the original Elo-rating and the recently described ADAGIO perform less well. Finally, we propose two simple methods to estimate uncertainty at the individual and group level. These uncertainty measures further allow to differentiate non-existent, very flat and highly uncertain hierarchies from intermediate, steep and certain hierarchies. Overall, we find that the methods for inferring dominance hierarchies are relatively robust, even when the ratio of observed interactions to individuals is as low as 10 to 20. However, we suggest that implementing simple procedures for estimating uncertainty will benefit researchers, and quantifying the shape of the dominance hierarchies will provide new insights into the study organisms.

          Related collections

          Author and article information

          Journal
          bioRxiv
          February 23 2017
          Article
          10.1101/111146
          417e5a4f-4f47-4050-aad4-767240c0ad7f
          © 2017
          History

          Anatomy & Physiology,Animal science & Zoology
          Anatomy & Physiology, Animal science & Zoology

          Comments

          Comment on this article