20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reactive oxygen species (ROS) have been recognized as important signaling compounds of major importance in a number of developmental and physiological processes in plants. The existence of cellular compartments enables efficient redox compartmentalization and ensures proper functioning of ROS-dependent signaling pathways. Similar to other organisms, the production of individual ROS in plant cells is highly localized and regulated by compartment-specific enzyme pathways on transcriptional and post-translational level. ROS metabolism and signaling in specific compartments are greatly affected by their chemical interactions with other reactive radical species, ROS scavengers and antioxidant enzymes. A dysregulation of the redox status, as a consequence of induced ROS generation or decreased capacity of their removal, occurs in plants exposed to diverse stress conditions. During stress condition, strong induction of ROS-generating systems or attenuated ROS scavenging can lead to oxidative or nitrosative stress conditions, associated with potential damaging modifications of cell biomolecules. Here, we present an overview of compartment-specific pathways of ROS production and degradation and mechanisms of ROS homeostasis control within plant cell compartments.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis.

          Reactive oxygen species (ROS) have been shown to be toxic but also function as signalling molecules. This biological paradox underlies mechanisms that are important for the integrity and fitness of living organisms and their ageing. The pathways that regulate ROS homeostasis are crucial for mitigating the toxicity of ROS and provide strong evidence about specificity in ROS signalling. By taking advantage of the chemistry of ROS, highly specific mechanisms have evolved that form the basis of oxidant scavenging and ROS signalling systems.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells.

              Drought is a major threat to agricultural production. Plants synthesize the hormone abscisic acid (ABA) in response to drought, triggering a signalling cascade in guard cells that results in stomatal closure, thus reducing water loss. ABA triggers an increase in cytosolic calcium in guard cells ([Ca2+]cyt) that has been proposed to include Ca2+ influx across the plasma membrane. However, direct recordings of Ca2+ currents have been limited and the upstream activation mechanisms of plasma membrane Ca2+ channels remain unknown. Here we report activation of Ca2+-permeable channels in the plasma membrane of Arabidopsis guard cells by hydrogen peroxide. The H2O2-activated Ca2+ channels mediate both influx of Ca2+ in protoplasts and increases in [Ca2+]cyt in intact guard cells. ABA induces the production of H2O2 in guard cells. If H2O2 production is blocked, ABA-induced closure of stomata is inhibited. Moreover, activation of Ca2+ channels by H2O2 and ABA- and H2O2-induced stomatal closing are disrupted in the recessive ABA-insensitive mutant gca2. These data indicate that ABA-induced H2O2 production and the H2O2-activated Ca2+ channels are important mechanisms for ABA-induced stomatal closing.
                Bookmark

                Author and article information

                Journal
                Antioxidants (Basel)
                Antioxidants (Basel)
                antioxidants
                Antioxidants
                MDPI
                2076-3921
                17 April 2019
                April 2019
                : 8
                : 4
                : 105
                Affiliations
                Department of Biochemistry, Palacký University in Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; janku.martina@ 123456seznam.cz (M.J.); lenka.luhova@ 123456upol.cz (L.L.)
                Author notes
                [* ]Correspondence: marek.petrivalsky@ 123456upol.cz ; Tel.: +420-585-634-925
                Author information
                https://orcid.org/0000-0003-1579-3632
                Article
                antioxidants-08-00105
                10.3390/antiox8040105
                6523537
                30999668
                41bc58fa-66be-4c57-8608-cee70a9b2c3a
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 04 March 2019
                : 13 April 2019
                Categories
                Review

                cell wall,chloroplasts,cytoplasmic membrane,cytosol,glyoxysomes,mitochondria,peroxisomes,plant cell,reactive oxygen species

                Comments

                Comment on this article