Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identifying the Origins of Vacancies in the Crystal Structures of Rock Salt-type Chalcogenide Superconductors

      research-article
      ,
      ACS Omega
      American Chemical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The tailored (computational) design of materials addressing future challenges requires a thorough understanding of their electronic structures. This becomes very apparent for a given material existing in a certain homogeneity range, as its particular composition influences its electronic structure and, eventually, its physical properties. This led us to explore the influence and, furthermore, the origin of vacancies in the crystal structures of rock salt-type superconductors by means of quantum-chemical techniques. In doing so, we examined the vibrational properties, electronic band structures, and nature of bonding for a series of superconducting transition-metal sulfides, i.e., MS (M = Sc, Y, Zr, Lu), which were identified to exist over certain homogeneity ranges. The outcome of our research indicates that the subtle competing interplay between two electronically unfavorable situations at the Fermi levels, i.e., the occupations of flat bands and the populations of antibonding states, appears to control the presence of vacancies in the crystal structures of the sulfides.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Generalized Gradient Approximation Made Simple

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              First-Principles Determination of the Soft Mode in Cubic\({\mathrm{ZrO}}_{2}\)

                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                13 September 2019
                24 September 2019
                : 4
                : 13
                : 15721-15728
                Affiliations
                [1]Institute of Inorganic Chemistry, RWTH Aachen University , Landoltweg 1, D-52074 Aachen, Germany
                Author notes
                Article
                10.1021/acsomega.9b02368
                6761743
                41f09772-2973-4813-b71d-c3fb64a6b325
                Copyright © 2019 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 28 July 2019
                : 30 August 2019
                Categories
                Article
                Custom metadata
                ao9b02368
                ao-2019-02368a

                Comments

                Comment on this article