15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ACTH Receptor (MC2R) Specificity: What Do We Know About Underlying Molecular Mechanisms?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coincidentally, the release of this Research Topic in Frontiers in Endocrinology takes place 25 years after the discovery of the adrenocorticotropic hormone receptor (ACTHR) by Mountjoy and colleagues. In subsequent years, following the discovery of other types of mammalian melanocortin receptors (MCRs), ACTHR also became known as melanocortin type 2 receptor (MC2R). At present, five types of MCRs have been reported, all of which share significant sequence similarity at the amino acid level, and all of which specifically bind melanocortins (MCs)—a group of biologically active peptides generated by proteolysis of the proopiomelanocortin precursor. All MCs share an identical –H–F–R–W– pharmacophore sequence. α-Melanocyte-stimulating hormone (α-MSH) and adrenocorticotropic hormone (ACTH) are the most extensively studied MCs and are derived from the same region. Essentially, α-MSH is formed from the first 13 amino acid residues of ACTH. ACTHR is unique among MCRs because it binds one sole ligand—ACTH, which makes it a very attractive research object for molecular pharmacologists. However, much research has failed, and functional studies of this receptor are lagging behind other MCRs. The reason for these difficulties has already been outlined by Mountjoy and colleagues in their publication on ACTHR coding sequence discovery where the Cloudman S91 melanoma cell line was used for receptor expression because it was a “more sensitive assay system.” Subsequent work showed that ACTHR could be successfully expressed only in endogenous MCR-expressing cell lines, since in other cell lines it is retained within the endoplasmic reticulum. The resolution of this methodological problem came in 2005 with the discovery of melanocortin receptor accessory protein, which is required for the formation of functionally active ACTHR. The decade that followed this discovery was filled with exciting research that provided insight into the molecular mechanisms underlying the action of ACTHR. The purpose of this review is to summarize the advances in this fascinating research field.

          Related collections

          Most cited references202

          • Record: found
          • Abstract: found
          • Article: not found

          Crystal structure of rhodopsin: A G protein-coupled receptor.

          Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) respond to a variety of different external stimuli and activate G proteins. GPCRs share many structural features, including a bundle of seven transmembrane alpha helices connected by six loops of varying lengths. We determined the structure of rhodopsin from diffraction data extending to 2.8 angstroms resolution. The highly organized structure in the extracellular region, including a conserved disulfide bridge, forms a basis for the arrangement of the seven-helix transmembrane motif. The ground-state chromophore, 11-cis-retinal, holds the transmembrane region of the protein in the inactive conformation. Interactions of the chromophore with a cluster of key residues determine the wavelength of the maximum absorption. Changes in these interactions among rhodopsins facilitate color discrimination. Identification of a set of residues that mediate interactions between the transmembrane helices and the cytoplasmic surface, where G-protein activation occurs, also suggests a possible structural change upon photoactivation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cloning of a family of genes that encode the melanocortin receptors.

            Melanocyte-stimulating hormone (MSH) and adrenocorticotropic hormone (ACTH) regulate pigmentation and adrenal cortical function, respectively. These peptides also have a variety of biological activities in other areas, including the brain, the pituitary, and the immune system. A complete understanding of the biological activities of these hormones requires the isolation and characterization of their corresponding receptors. The murine and human MSH receptors (MSH-Rs) and a human ACTH receptor (ACTH-R) were cloned. These receptors define a subfamily of receptors coupled to guanine nucleotide-binding proteins that may include the cannabinoid receptor.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS.

              M Rodbell (1964)
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                06 February 2017
                2017
                : 8
                : 13
                Affiliations
                [1] 1Latvian Biomedical Research and Study Centre , Riga, Latvia
                Author notes

                Edited by: Nicole Gallo-Payet, Université de Sherbrooke, Canada

                Reviewed by: Robert Dores, University of Denver, USA; Adrian Clark, St George’s University of London, UK

                *Correspondence: Davids Fridmanis, davids@ 123456biomed.lu.lv

                Specialty section: This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2017.00013
                5292628
                28220105
                42659bdf-8029-4991-a58b-07b0683a9a83
                Copyright © 2017 Fridmanis, Roga and Klovins.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 October 2016
                : 16 January 2017
                Page count
                Figures: 7, Tables: 3, Equations: 0, References: 215, Pages: 23, Words: 20181
                Funding
                Funded by: Latvijas Zinātnes Padome 10.13039/501100005375
                Categories
                Endocrinology
                Review

                Endocrinology & Diabetes
                mc2r,acthr,specificity,mutation,mutagenesis,site directed
                Endocrinology & Diabetes
                mc2r, acthr, specificity, mutation, mutagenesis, site directed

                Comments

                Comment on this article