15
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before September 30, 2024

      About Blood Purification: 2.2 Impact Factor I 5.8 CiteScore I 0.782 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Nutritional and Metabolic Alterations during Continuous Renal Replacement Therapy

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adequate feeding of critically ill patients under continuous renal replacement therapy (CRRT) remains a challenging issue. We performed a systematic search of the literature published between 1992 and 2012 using the quorum guidelines regarding nutrition in intensive care unit patients treated with CRRT. Daily recommended energy requirements during CRRT are between 25 and 35 kcal/kg with carbohydrates and lipids accounting for 60-70% and 30-40% of calorie intake, respectively. Daily protein needs range from 1.5 to 1.8 g/kg. Indirect calorimetry corrected for CRRT-induced CO<sub>2</sub> diversion should be used to more correctly match calorie intake to the real needs. This type of tool is not yet available but hopefully soon. Electrolyte deficit as well as overload have been described during CRRT but, in general, can be easily controlled. Although not strongly evidenced, consensus exists to supplement important micronutrients such as amino acids (glutamine), water-soluble vitamins and trace elements.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Continuous renal replacement therapy: a worldwide practice survey. The beginning and ending supportive therapy for the kidney (B.E.S.T. kidney) investigators.

          Little information is available regarding current practice in continuous renal replacement therapy (CRRT) for the treatment of acute renal failure (ARF) and the possible clinical effect of practice variation. Prospective observational study. A total of 54 intensive care units (ICUs) in 23 countries. A cohort of 1006 ICU patients treated with CRRT for ARF. Collection of demographic, clinical and outcome data. All patients except one were treated with venovenous circuits, most commonly as venovenous hemofiltration (52.8%). Approximately one-third received CRRT without anticoagulation (33.1%). Among patients who received anticoagulation, unfractionated heparin (UFH) was the most common choice (42.9%), followed by sodium citrate (9.9%), nafamostat mesilate (6.1%), and low-molecular-weight heparin (LMWH; 4.4%). Hypotension related to CRRT occurred in 19% of patients and arrhythmias in 4.3%. Bleeding complications occurred in 3.3% of patients. Treatment with LMWH was associated with a higher incidence of bleeding complications (11.4%) compared to UFH (2.3%, p = 0.0083) and citrate (2.0%, p = 0.029). The median dose of CRRT was 20.4 ml/kg/h. Only 11.7% of patients received a dose of > 35 ml/kg/h. Most (85.5%) survivors recovered to dialysis independence at hospital discharge. Hospital mortality was 63.8%. Multivariable analysis showed that no CRRT-related variables (mode, filter material, drug for anticoagulation, and prescribed dose) predicted hospital mortality. This study supports the notion that, worldwide, CRRT practice is quite variable and not aligned with best evidence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ESPEN Guidelines on Parenteral Nutrition: adult renal failure.

            Among patients with renal failure, those with ARF and critical illness represent by far the largest group undergoing artificial nutrition. ARF, especially in the ICU, seldom occurs as isolated organ failure but rather is a component of a much more complex metabolic environment, in the setting of the multiple organ failure. Nutritional programs for ARF patients must consider not only the metabolic derangements peculiar to renal failure and with the underlying disease process/associated complications, but also the relevant derangements in nutrient balance due to renal replacement therapies, especially when highly efficient renal replacement therapies (RRT) are used, such as continuous veno-venous hemofiltration (CVVH), or prolonged intermittent modalities such as sustained low-efficiency dialysis (SLED). Finally it is to be taken into account that nutrient requirements can change considerably during the course of illness itself (see also guidelines on PN in intensive care). From a metabolic point of view, patients with CKD or on chronic HD who develop a superimposed acute illness should be considered to be similar to patients with ARF. The same principles in respect of PN should therefore be applied.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Newly designed CRRT membranes for sepsis and SIRS--a pragmatic approach for bedside intensivists summarizing the more recent advances: a systematic structured review.

              In recent years, after all the attention has been focused on the dose for continuous renal replacement therapy (CRRT) in sepsis and systemic inflammation response syndrome (SIRS), the relatively negative results of all those studies did urge our expectations on new approaches regarding CRRT in sepsis and SIRS. So far, after the failure of the major randomized studies on dose, attention is now drawn to new membranes that could better eliminate massive amounts of unbound mediators in wider spectrum and also in greater magnitude Nevertheless, for septic acute kidney injury, the recommended dose will remain 35 ml/kg/h until the IVOIRE (hIgh VOlume in Intensive Care) study will be published. In this new armamentarium, we have distinguished the first tools that can still be called membranes ranging from AN69 Surface Treated (ST), SEPTEX, polymethylmetacrylate, to Oxiris that can still run with a CRRT device. Polymyxin B is still a kind of membrane although it has a larger surface, but it can run in a hemoperfusion system and is also much more selective. Adsorptive columns and sorbents are not anymore membranes but are seen as cartridges as the surface is extremely huge when compared with that of membranes (more than 500 m). They can still run in a hemoperfusion device. At the very end, we do have apheresis or selective plasma exchange (also very close to sorbents and columns) but we have very few data up to now regarding sepsis. Regarding spectrum, CytoSorb seems to be very promising although it is not able to capture endotoxin and IL-10. Oxiris is also promising as it can capture endotoxin and cytokines. AN69 ST is very powerful to capture numerous cytokines and especially high-mobility group box 1 protein (a very upstream cytokine). Polymethylmetacrylate has also the power to capture endotoxin and numerous other cytokines probably with a larger magnitude than Oxiris although this is not proven. Lastly, high-porosity membranes (Septex) may play a role especially when used in continuous venovenous hemodialysis mode. At the end, if we look for a more enlarged spectrum and a higher magnitude, CytoSorb might be seen as the most promising although not having the ability to fix endotoxin. Future studies will tell us which membrane or sorbent will be most useful in the adjunctive treatment for sepsis.
                Bookmark

                Author and article information

                Journal
                BPU
                Blood Purif
                10.1159/issn.0253-5068
                Blood Purification
                S. Karger AG
                0253-5068
                1421-9735
                2013
                August 2013
                08 May 2013
                : 35
                : 4
                : 279-284
                Affiliations
                aIntensive Care Department, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, and bCliniques de l'Europe, Site St Michel, Brussels, and cDepartment of Anaesthesiology and Critical Care Medicine, Ziekenhuis Oost-Limburg, Genk, Belgium; dHaut Leveque University Hospital of Bordeaux, University of Bordeaux 2, Pessac, France
                Author notes
                *Prof. Patrick M. Honoré, MD, PhD, Intensive Care Department, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), BE-1090 Brussels (Belgium), E-Mail Patrick.Honore@uzbrussel.be
                Article
                350610 Blood Purif 2013;35:279-284
                10.1159/000350610
                23689499
                4292ccc8-211a-4a32-b92a-49d2c9b75f8c
                © 2013 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Tables: 1, Pages: 6
                Categories
                In-Depth Review

                Cardiovascular Medicine,Nephrology
                Systemic inflammatory response syndrome,Dialytrauma,Continuous renal replacement therapy trauma,Continuous renal replacement therapy,Nutrition,Indirect calorimetry,Acute kidney injury,Calorie intake, Glutamine,Macronutrients,Micronutrients,Blood purification,Dialysis,Hemofiltration,Sepsis

                Comments

                Comment on this article