8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chronic Psychosocial Stress and Negative Feedback Inhibition: Enhanced Hippocampal Glucocorticoid Signaling despite Lower Cytoplasmic GR Expression

      research-article
      , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic subordinate colony housing (CSC), a pre-clinically validated mouse model for chronic psychosocial stress, results in increased basal and acute stress-induced plasma adrenocorticotropic hormone (ACTH) levels. We assessed CSC effects on hippocampal glucocorticoid (GC) receptor (GR), mineralocorticoid receptor (MR), and FK506 binding protein (FKBP51) expression, acute heterotypic stressor-induced GR translocation, as well as GC effects on gene expression and cell viability in isolated hippocampal cells. CSC mice showed decreased GR mRNA and cytoplasmic protein levels compared with single-housed control (SHC) mice. Basal and acute stress-induced nuclear GR protein expression were comparable between CSC and SHC mice, as were MR and FKBP51 mRNA and/or cytoplasmic protein levels. In vitro the effect of corticosterone (CORT) on hippocampal cell viability and gene transcription was more pronounced in CSC versus SHC mice. In summary, CSC mice show an, if at all, increased hippocampal GC signaling capacity despite lower cytoplasmic GR protein expression, making negative feedback deficits in the hippocampus unlikely to contribute to the increased ACTH drive following CSC.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation.

          Two receptor systems for corticosterone (CORT) can be distinguished in rat brain: mineralocorticoid-like or CORT receptors (CR) and glucocorticoid receptors (GR). The microdistribution and extent of occupation of each receptor population by CORT were studied. The CR system is restricted predominantly to the lateral septum and hippocampus. Within the hippocampus, the highest density occurs in the subiculum +/- CA1 cell field (144 fmol/mg protein) and the dentate gyrus (104 fmol/mg protein). Affinity of CR for CORT was very high (Kd, approximately 0.5 nM). The GR system has a more widespread distribution in the brain. The highest density for GR is in the lateral septum (195 fmol/mg protein), the dentate gyrus (133 fmol/mg protein), the nucleus tractus solitarii and central amygdala. Substantial amounts of GR are present in the paraventricular nucleus and locus coeruleus and low amounts in the raphe area and the subiculum + CA1 cell field. The affinity of GR for CORT (Kd, approximately 2.5-5 nM) was 6- to 10-fold lower than that of CR. Occupation of CR by endogenous ligand was 89.5% during morning trough levels of pituitary-adrenal activity (plasma CORT, 1.4 micrograms/100 ml). Similar levels of occupation (88.7% and 97.6%) were observed at the diurnal peak (plasma CORT, 27 micrograms/100 ml) and after 1 h of restraint stress (plasma CORT, 25 micrograms/100 ml), respectively. Furthermore, a dose of 1 microgram CORT/100 g BW, sc, resulted in 80% CORT receptor occupation, whereas GR were not occupied. For 50% occupation of GR, doses needed to be increased to 50-100 micrograms/100 g BW, and for 95% occupation, a dose of 1 mg CORT was required. The plasma CORT level at the time of half-maximal GR occupation was about 25 micrograms/100 ml, which is in the range of levels attained after stress or during the diurnal peak of pituitary-adrenal activity. Thus, CR are extensively filled (greater than 90%) with endogenous CORT under most circumstances, while GR become occupied concurrent with increasing plasma CORT concentrations due to stress or diurnal rhythm. We conclude that CORT action via CR may be involved in a tonic (permissive) influence on brain function with the septohippocampal complex as a primary target. In view of the almost complete occupation of CR by endogenous hormones, the regulation of the CORT signal via CR will, most likely, be by alterations in the number of such receptors. In contrast, CORT action via GR is involved in its feedback action on stress-activated brain mechanisms, and GR occur widely in the brain.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stress and hippocampal plasticity.

            B S McEwen (1999)
            The hippocampus is a target of stress hormones, and it is an especially plastic and vulnerable region of the brain. It also responds to gonadal, thyroid, and adrenal hormones, which modulate changes in synapse formation and dendritic structure and regulate dentate gyrus volume during development and in adult life. Two forms of structural plasticity are affected by stress: Repeated stress causes atrophy of dendrites in the CA3 region, and both acute and chronic stress suppresses neurogenesis of dentate gyrus granule neurons. Besides glucocorticoids, excitatory amino acids and N-methyl-D-aspartate (NMDA) receptors are involved in these two forms of plasticity as well as in neuronal death that is caused in pyramidal neurons by seizures and by ischemia. The two forms of hippocampal structural plasticity are relevant to the human hippocampus, which undergoes a selective atrophy in a number of disorders, accompanied by deficits in declarative episodic, spatial, and contextual memory performance. It is important, from a therapeutic standpoint, to distinguish between a permanent loss of cells and a reversible atrophy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis.

              This article defines stress and related concepts and reviews their historical development. The notion of a stress system as the effector of the stress syndrome is suggested, and its physiologic and pathophysiologic manifestations are described. A new perspective on human disease states associated with dysregulation of the stress system is provided. Published original articles from human and animal studies and selected reviews. Literature was surveyed utilizing MEDLINE and the Index Medicus. Original articles from the basic science and human literature consisted entirely of controlled studies based on verified methodologies and, with the exception of the most recent studies, replicated by more than one laboratory. Many of the basic science and clinical studies had been conducted in our own laboratories and clinical research units. Reviews cited were written by acknowledged leaders in the fields of neurobiology, endocrinology, and behavior. Independent extraction and cross-referencing by the authors. Stress and related concepts can be traced as far back as written science and medicine. The stress system coordinates the generalized stress response, which takes place when a stressor of any kind exceeds a threshold. The main components of the stress system are the corticotropin-releasing hormone and locus ceruleus-norepinephrine/autonomic systems and their peripheral effectors, the pituitary-adrenal axis, and the limbs of the autonomic system. Activation of the stress system leads to behavioral and peripheral changes that improve the ability of the organism to adjust homeostasis and increase its chances for survival. There has been an exponential increase in knowledge regarding the interactions among the components of the stress system and between the stress system and other brain elements involved in the regulation of emotion, cognitive function, and behavior, as well as with the axes responsible for reproduction, growth, and immunity. This new knowledge has allowed association of stress system dysfunction, characterized by sustained hyperactivity and/or hypoactivity, to various pathophysiologic states that cut across the traditional boundaries of medical disciplines. These include a range of psychiatric, endocrine, and inflammatory disorders and/or susceptibility to such disorders. We hope that knowledge from apparently disparate fields of science and medicine integrated into a working theoretical framework will allow generation and testing of new hypotheses on the pathophysiology and diagnosis of, and therapy for, a variety of human illnesses reflecting systematic alterations in the principal effectors of the generalized stress response. We predict that pharmacologic agents capable of altering the central apparatus that governs the stress response will be useful in the treatment of many of these illnesses.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                8 April 2016
                2016
                : 11
                : 4
                : e0153164
                Affiliations
                [001]Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93053, Regensburg, Germany
                Radboud University Medical Centre, NETHERLANDS
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AMF SOR. Performed the experiments: AMF SOR. Analyzed the data: AMF SOR. Contributed reagents/materials/analysis tools: AMF SOR. Wrote the paper: AMF SOR.

                [¤]

                Current address: Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University Ulm, 89081, Ulm, Germany

                Article
                PONE-D-16-04400
                10.1371/journal.pone.0153164
                4825929
                27057751
                42f1c871-21e1-417e-9f77-f27ac3f055ce
                © 2016 Füchsl, Reber

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 31 January 2016
                : 4 March 2016
                Page count
                Figures: 6, Tables: 0, Pages: 18
                Funding
                Funded by: Deutsche Forschungsgemeinschaft (DE)
                Award ID: DFG-RE 2911/5-1
                Award Recipient :
                This work was supported by the Deutsche Forschungsgemeinschaft/German Research Foundation to SOR, DFG-RE 2911/5-1. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Molecular Biology Assays and Analysis Techniques
                Gene Expression and Vector Techniques
                Protein Expression
                Research and Analysis Methods
                Molecular Biology Techniques
                Molecular Biology Assays and Analysis Techniques
                Gene Expression and Vector Techniques
                Protein Expression
                Biology and Life Sciences
                Anatomy
                Brain
                Hippocampus
                Medicine and Health Sciences
                Anatomy
                Brain
                Hippocampus
                Biology and Life Sciences
                Organisms
                Animals
                Vertebrates
                Amniotes
                Mammals
                Rodents
                Mice
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Blood
                Blood Plasma
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Blood
                Blood Plasma
                Biology and Life Sciences
                Physiology
                Body Fluids
                Blood
                Blood Plasma
                Medicine and Health Sciences
                Physiology
                Body Fluids
                Blood
                Blood Plasma
                Medicine and Health Sciences
                Hematology
                Blood
                Blood Plasma
                Research and Analysis Methods
                Extraction Techniques
                Protein Extraction
                Medicine and Health Sciences
                Mental Health and Psychiatry
                Psychological Stress
                Biology and Life Sciences
                Psychology
                Psychological Stress
                Social Sciences
                Psychology
                Psychological Stress
                Biology and Life Sciences
                Genetics
                Gene Expression
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Messenger RNA
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article