1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Chemometric-enhanced metabolic profiling of five Pinus species using HPLC-MS/MS spectrometry: Correlation to in vitro anti-aging, anti-Alzheimer and antidiabetic activities

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: not found
          • Article: not found

          A new and rapid colorimetric determination of acetylcholinesterase activity

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Telomere dysfunction induces metabolic and mitochondrial compromise.

            Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1α and PGC-1β, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1α expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1α and PGC-1β promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere-p53-PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure and function of telomeres.

              The DNA of telomeres--the terminal DNA-protein complexes of chromosomes--differs notably from other DNA sequences in both structure and function. Recent work has highlighted its remarkable mode of synthesis by the ribonucleoprotein reverse transcriptase, telomerase, as well as its ability to form unusual structures in vitro. Moreover, telomere synthesis by telomerase has been shown to be essential for telomere maintenance and long-term viability.
                Bookmark

                Author and article information

                Journal
                Journal of Chromatography B
                Journal of Chromatography B
                Elsevier BV
                15700232
                July 2021
                July 2021
                : 1177
                : 122759
                Article
                10.1016/j.jchromb.2021.122759
                42fb4470-8efd-4184-9251-cb95de158ee2
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article