0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A comprehensive review on the synthesis and performance of different zirconium-based adsorbents for the removal of various water contaminants

      ,
      Chemical Engineering Journal
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references164

          • Record: found
          • Abstract: found
          • Article: not found

          Removal of synthetic dyes from wastewaters: a review.

          The more recent methods for the removal of synthetic dyes from waters and wastewater are complied. The various methods of removal such as adsorption on various sorbents, chemical decomposition by oxidation, photodegradation, and microbiological decoloration, employing activated sludge, pure cultures and microbe consortiums are described. The advantages and disadvantages of the various methods are discussed and their efficacies are compared.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hybridization of MOFs and polymers.

            Metal-organic frameworks (MOFs) have received much attention because of their attractive properties. They show great potential applications in many fields. An emerging trend in MOF research is hybridization with flexible materials, which is the subject of this review. Polymers possess a variety of unique attributes, such as softness, thermal and chemical stability, and optoelectrical properties that can be integrated with MOFs to make hybrids with sophisticated architectures. Hybridization of MOFs and polymers is producing new and versatile materials that exhibit peculiar properties hard to realize with the individual components. This review article focuses on the methodology for hybridization of MOFs and polymers, as well as the intriguing functions of hybrid materials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chitosan microspheres as a potential carrier for drugs.

              Chitosan is a biodegradable natural polymer with great potential for pharmaceutical applications due to its biocompatibility, high charge density, non-toxicity and mucoadhesion. It has been shown that it not only improves the dissolution of poorly soluble drugs but also exerts a significant effect on fat metabolism in the body. Gel formation can be obtained by interactions of chitosans with low molecular counterions such as polyphosphates, sulphates and crosslinking with glutaraldehyde. This gelling property of chitosan allows a wide range of applications such as coating of pharmaceuticals and food products, gel entrapment of biochemicals, plant embryo, whole cells, microorganism and algae. This review is an insight into the exploitation of the various properties of chitosan to microencapsulate drugs. Various techniques used for preparing chitosan microspheres and evaluation of these microspheres have also been reviewed. This review also includes the factors that affect the entrapment efficiency and release kinetics of drugs from chitosan microspheres.
                Bookmark

                Author and article information

                Journal
                Chemical Engineering Journal
                Chemical Engineering Journal
                Elsevier BV
                13858947
                November 2021
                November 2021
                : 424
                : 130509
                Article
                10.1016/j.cej.2021.130509
                4305240a-0153-4e16-9137-29617fdb0a42
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article