12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Engineering banana endosphere microbiome to improve Fusarium wilt resistance in banana

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Plant microbiome highlights the importance of endosphere microbiome for growth and health of the host plant. Microbial community analysis represents an elegant way to identify keystone microbial species that have a more central position in the community. The aim of this study was to access the interactions between the keystone bacterial species and plants during banana Fusarium wilt process, by comparing the endophytic bacterial and fungal community in banana roots and shoot tips during growth and wilting processes. The keystone bacterial species were isolated and further engineered to improve banana wilt resistance.

          Results

          Banana endosphere microbiome structure varied during plant growth and wilting processes. Bacterial and fungal diversity in the shoot tips and roots increased with the development of the banana plantlets. The bacterial groups belonging to the Enterobacteriaceae family with different relative abundances were detected in all the samples. The Klebsiella spp. might be the keystone bacteria during the growth of banana plantlets. The relative abundance of Fusarium associated with the wilt disease did not increase during the wilting process. The endophytic Enterobacteriaceae strains Enterobacter sp. E5, Kosakonia sp. S1, and Klebsiella sp. Kb were isolated on Enterobacteriaceae selective medium and further engineered by expressing 1-aminocyclopropane-1-carboxylate (ACC) deaminase on the bacterial cell walls (designated as E5P, S1P, and KbP, respectively). Pot experiments suggested that plants inoculated with strains E5, E5P, S1, and S1P increased resistance to the Fusarium wilt disease compared with the controls without inoculation, whereas the Klebsiella inoculation (Kb and KbP) did not increase the wilt resistance. Compared with the inoculation with the wild strains E5 and S1, the inoculation with engineered strains E5P and S1P significantly increased wilt resistance and promoted plant growth, respectively. The results illustrated that the keystone species in the banana microbiome may not be dominant in numbers and the functional role of keystone species should be involved in the wilt resistance.

          Conclusion

          The ACC deaminase activity of engineered bacteria was essential to the Fusarium wilt resistance and growth promotion of banana plants. Engineering keystone bacteria in plant microbiome with ACC deaminase on the cell walls should be a promising method to improve plant growth and disease resistance.

          Electronic supplementary material

          The online version of this article (10.1186/s40168-019-0690-x) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Understanding and exploiting plant beneficial microbes.

            After a century of incremental research, technological advances, coupled with a need for sustainable crop yield increases, have reinvigorated the study of beneficial plant-microbe interactions with attention focused on how microbiomes alter plant phenotypes. We review recent advances in plant microbiome research, and describe potential applications for increasing crop productivity. The phylogenetic diversity of plant microbiomes is increasingly well characterized, and their functional diversity is becoming more accessible. Large culture collections are available for controlled experimentation, with more to come. Genetic resources are being brought to bear on questions of microbiome function. We expect that microbial amendments of varying complexities will expose rules governing beneficial plant-microbe interactions contributing to plant growth promotion and disease resistance, enabling more sustainable agriculture.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The plant microbiome explored: implications for experimental botany.

              The importance of microbial root inhabitants for plant growth and health was recognized as early as 100 years ago. Recent insights reveal a close symbiotic relationship between plants and their associated microorganisms, and high structural and functional diversity within plant microbiomes. Plants provide microbial communities with specific habitats, which can be broadly categorized as the rhizosphere, phyllosphere, and endosphere. Plant-associated microbes interact with their host in essential functional contexts. They can stimulate germination and growth, help plants fend off disease, promote stress resistance, and influence plant fitness. Therefore, plants have to be considered as metaorganisms within which the associated microbes usually outnumber the cells belonging to the plant host. The structure of the plant microbiome is determined by biotic and abiotic factors but follows ecological rules. Metaorganisms are co-evolved species assemblages. The metabolism and morphology of plants and their microbiota are intensively connected with each other, and the interplay of both maintains the functioning and fitness of the holobiont. Our study of the current literature shows that analysis of plant microbiome data has brought about a paradigm shift in our understanding of the diverse structure and functioning of the plant microbiome with respect to the following: (i) the high interplay of bacteria, archaea, fungi, and protists; (ii) the high specificity even at cultivar level; (iii) the vertical transmission of core microbiomes; (iv) the extraordinary function of endophytes; and (v) several unexpected functions and metabolic interactions. The plant microbiome should be recognized as an additional factor in experimental botany and breeding strategies.
                Bookmark

                Author and article information

                Contributors
                caolssclx@163.com
                zhangrd@mail.sysu.edu.cn
                Journal
                Microbiome
                Microbiome
                Microbiome
                BioMed Central (London )
                2049-2618
                15 May 2019
                15 May 2019
                2019
                : 7
                : 74
                Affiliations
                [1 ]ISNI 0000 0001 2360 039X, GRID grid.12981.33, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, , Sun Yat-sen University, ; Guangzhou, China
                [2 ]ISNI 0000 0001 2360 039X, GRID grid.12981.33, School of Life Sciences, Guangdong Provincial Key Laboratory for Climate Change and Natural Disaster Studies, , Sun Yat-sen University, ; Guangzhou, China
                Author information
                http://orcid.org/0000-0002-0763-0668
                Article
                690
                10.1186/s40168-019-0690-x
                6521393
                31092296
                4323fc0d-73a2-41b7-be71-0f8bd637ca24
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 6 December 2018
                : 5 May 2019
                Categories
                Research
                Custom metadata
                © The Author(s) 2019

                acc,banana,endophyte,enterobacter,ethylene,fusarium wilt
                acc, banana, endophyte, enterobacter, ethylene, fusarium wilt

                Comments

                Comment on this article