4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of the hippocampus in weighting expectations during inference under uncertainty

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Making inference under uncertainty requires an optimal weighting of prior expectations and observations. How this weighting is realized in the brain remains elusive. To investigate this, we recorded functional neuroimaging data while participants estimated a number based on noisy observations. Crucially, the prior expectation about the variability of observations (an expected variability) was manipulated. Consistent with normative models, when novel observations were characterized by higher expected or observed variability, participants' estimates relied more on expectations than novel observations and were characterized by higher stochasticity. Activity in hippocampus increased when novel evidence was characterized by higher expected or observed variability. Response in superior parietal cortex reflected a precision-weighted prediction error signal (i.e., the distance between observations and expectations) that was modulated by hippocampal activity. Our findings implicate the hippocampus during inference under uncertainty, suggesting a role in weighting prior representations over observations and in modulating responsivity of superior parietal cortex to prediction error.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Bayesian integration in sensorimotor learning.

          When we learn a new motor skill, such as playing an approaching tennis ball, both our sensors and the task possess variability. Our sensors provide imperfect information about the ball's velocity, so we can only estimate it. Combining information from multiple modalities can reduce the error in this estimate. On a longer time scale, not all velocities are a priori equally probable, and over the course of a match there will be a probability distribution of velocities. According to bayesian theory, an optimal estimate results from combining information about the distribution of velocities-the prior-with evidence from sensory feedback. As uncertainty increases, when playing in fog or at dusk, the system should increasingly rely on prior knowledge. To use a bayesian strategy, the brain would need to represent the prior distribution and the level of uncertainty in the sensory feedback. Here we control the statistical variations of a new sensorimotor task and manipulate the uncertainty of the sensory feedback. We show that subjects internally represent both the statistical distribution of the task and their sensory uncertainty, combining them in a manner consistent with a performance-optimizing bayesian process. The central nervous system therefore employs probabilistic models during sensorimotor learning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An internal model for sensorimotor integration.

            On the basis of computational studies it has been proposed that the central nervous system internally simulates the dynamic behavior of the motor system in planning, control, and learning; the existence and use of such an internal model is still under debate. A sensorimotor integration task was investigated in which participants estimated the location of one of their hands at the end of movements made in the dark and under externally imposed forces. The temporal propagation of errors in this task was analyzed within the theoretical framework of optimal state estimation. These results provide direct support for the existence of an internal model.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pattern separation in the human hippocampal CA3 and dentate gyrus.

              Pattern separation, the process of transforming similar representations or memories into highly dissimilar, nonoverlapping representations, is a key component of many functions ascribed to the hippocampus. Computational models have stressed the role of the hippocampus and, in particular, the dentate gyrus and its projections into the CA3 subregion in pattern separation. We used high-resolution (1.5-millimeter isotropic voxels) functional magnetic resonance imaging to measure brain activity during incidental memory encoding. Although activity consistent with a bias toward pattern completion was observed in CA1, the subiculum, and the entorhinal and parahippocampal cortices, activity consistent with a strong bias toward pattern separation was observed in, and limited to, the CA3/dentate gyrus. These results provide compelling evidence of a key role of the human CA3/dentate gyrus in pattern separation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Cortex
                Cortex
                Cortex; a Journal Devoted to the Study of the Nervous System and Behavior
                Masson
                0010-9452
                1973-8102
                1 June 2019
                June 2019
                : 115
                : 1-14
                Affiliations
                [a ]City, University of London, London, UK
                [b ]The Wellcome Trust Centre for Neuroimaging, UCL, London, UK
                [c ]Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
                Author notes
                [] Corresponding author. City, University of London, Northampton Square, London EC1V 0HB, UK. francesco.rigoli@ 123456city.ac.uk
                Article
                S0010-9452(19)30020-6
                10.1016/j.cortex.2019.01.005
                6533111
                30738997
                43d6cbb5-c7b8-4894-8054-e473e8dadc51
                © 2019 The Author(s)

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 3 June 2018
                : 22 September 2018
                : 6 January 2019
                Categories
                Article

                Neurology
                hippocampus,inference,bayesian,prior,uncertainty
                Neurology
                hippocampus, inference, bayesian, prior, uncertainty

                Comments

                Comment on this article