14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The timecourse of space- and object-based attentional prioritization with varying degrees of certainty

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The relative contributions of objects (i.e., object-based) and underlying spatial (i.e., space-based representations) to attentional prioritization and selection remain unclear. In most experimental circumstances, the two representations overlap thus their respective contributions cannot be evaluated. Here, a dynamic version of the two-rectangle paradigm allowed for a successful de-coupling of spatial and object representations. Space-based (cued spatial location), cued end of the object, and object-based (locations within the cued object) effects were sampled at several timepoints following the cue with high or low certainty as to target location. In the high uncertainty condition spatial benefits prevailed throughout most of the timecourse, as evidenced by facilitatory and inhibitory effects. Additionally, the cued end of the object, rather than a whole object, received the attentional benefit. When target location was predictable (low uncertainty manipulation), only probabilities guided selection (i.e., evidence by a benefit for the statistically biased location). These results suggest that with high spatial uncertainty, all available information present within the stimulus display is used for the purposes of attentional selection (e.g., spatial locations, cued end of the object) albeit to varying degrees and at different time points. However, as certainty increases, only spatial certainty guides selection (i.e., object ends and whole objects are filtered out). Taken together, these results further elucidate the contributing role of space- and object-representations to attentional guidance.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Visual attention: the past 25 years.

          This review focuses on covert attention and how it alters early vision. I explain why attention is considered a selective process, the constructs of covert attention, spatial endogenous and exogenous attention, and feature-based attention. I explain how in the last 25 years research on attention has characterized the effects of covert attention on spatial filters and how attention influences the selection of stimuli of interest. This review includes the effects of spatial attention on discriminability and appearance in tasks mediated by contrast sensitivity and spatial resolution; the effects of feature-based attention on basic visual processes, and a comparison of the effects of spatial and feature-based attention. The emphasis of this review is on psychophysical studies, but relevant electrophysiological and neuroimaging studies and models regarding how and where neuronal responses are modulated are also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neural correlates of decision variables in parietal cortex.

            Decision theory proposes that humans and animals decide what to do in a given situation by assessing the relative value of each possible response. This assessment can be computed, in part, from the probability that each action will result in a gain and the magnitude of the gain expected. Here we show that the gain (or reward) a monkey can expect to realize from an eye-movement response modulates the activity of neurons in the lateral intraparietal area, an area of primate cortex that is thought to transform visual signals into eye-movement commands. We also show that the activity of these neurons is sensitive to the probability that a particular response will result in a gain. When animals can choose freely between two alternative responses, the choices subjects make and neuronal activation in this area are both correlated with the relative amount of gain that the animal can expect from each response. Our data indicate that a decision-theoretic model may provide a powerful new framework for studying the neural processes that intervene between sensation and action.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption.

              To study the mechanisms underlying covert orienting of attention in visual space, subjects were given advance cues indicating the probable locations of targets that they had to discriminate and localize. Direct peripheral cues (brightening of one of four boxes in peripheral vision) and symbolic central cues (an arrow at the fixation point indicating a probable peripheral box) were compared. Peripheral and central cues are believed to activate different reflexive and voluntary modes of orienting (Jonides, 1981; Posner, 1980). Experiment 1 showed that the time courses of facilitation and inhibition from peripheral and central cues were characteristic and different. Experiment 2 showed that voluntary orienting in response to symbolic central cues is interrupted by reflexive orienting to random peripheral flashes. Experiment 3 showed that irrelevant peripheral flashes also compete with relevant peripheral cues. The amount of interference varied systematically with the interval between the onset of the relevant cue and of the distracting flash (cue-flash onset asynchrony) and with the cuing condition. Taken together, these effects support a model for spatial attention with distinct but interacting reflexive and voluntary orienting mechanisms.
                Bookmark

                Author and article information

                Journal
                Front Integr Neurosci
                Front Integr Neurosci
                Front. Integr. Neurosci.
                Frontiers in Integrative Neuroscience
                Frontiers Media S.A.
                1662-5145
                05 December 2013
                2013
                : 7
                : 88
                Affiliations
                Department of Psychology, George Washington University Washington, DC, USA
                Author notes

                Edited by: Vivian Ciaramitaro, University of Massachusetts Boston, USA

                Reviewed by: Antonio Pereira, Federal University of Rio Grande do Norte, Brazil; Vivian Ciaramitaro, University of Massachusetts Boston, USA

                *Correspondence: Leslie Drummond, Department of Psychology, George Washington University, Washington, DC 20052, USA e-mail: drummond@ 123456gwmail.gwu.edu

                This article was submitted to the journal Frontiers in Integrative Neuroscience.

                Article
                10.3389/fnint.2013.00088
                3851778
                24367302
                4408f455-4d27-422e-b8f9-894fbaed3edf
                Copyright © 2013 Drummond and Shomstein.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 July 2013
                : 19 November 2013
                Page count
                Figures: 5, Tables: 2, Equations: 0, References: 45, Pages: 10, Words: 0
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                object-based attention,space-based attention,dynamic displays,inhibition of return,attentional allocation

                Comments

                Comment on this article