14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exposure–safety analysis of QTc interval and transaminase levels following bedaquiline administration in patients with drug‐resistant tuberculosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bedaquiline (BDQ) has shown great value in the treatment of multidrug‐resistant tuberculosis (MDR‐TB) in recent years. However, exposure–safety relationships must be explored to extend the use of BDQ. Two reported safety findings for BDQ are prolongation of the QTc interval and elevation of transaminase levels. In this study, we investigated the potential relationships between BDQ and/or its main metabolite (M2) pharmacokinetic (PK) metrics and QTcF interval or transaminase levels in patients with MDR‐TB using the approved dose regimen. Data from 429 patients with MDR‐TB from two phase IIb studies were analyzed via nonlinear mixed‐effects modeling. Individual model‐predicted concentrations and summary PK metrics were evaluated, respectively, in the QTcF interval and transaminase level exposure–response models. Investigation of further covariate effects was performed in both models. M2 concentrations were found to be responsible for the drug‐related QTcF increase in a model accounting for circadian rhythm patterns, time on study, effect of concomitant medication with QT liability, and patient demographics. Simulations with the final model suggested that doses higher than the approved dose (leading to increased M2 concentrations) are not expected to lead to a critical QTcF interval increase. No exposure–safety relationship could be described with transaminase levels despite previous reports of higher levels in patients treated with BDQ. The developed longitudinal models characterized the role of M2 concentrations in QTc interval prolongation and found no concentration dependency for transaminase level elevation, together suggesting that BDQ exposure at the high end of the observed range may not be associated with a higher risk of safety events.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Multidrug-resistant tuberculosis and culture conversion with bedaquiline.

          Bedaquiline (Sirturo, TMC207), a diarylquinoline that inhibits mycobacterial ATP synthase, has been associated with accelerated sputum-culture conversion in patients with multidrug-resistant tuberculosis, when added to a preferred background regimen for 8 weeks. In this phase 2b trial, we randomly assigned 160 patients with newly diagnosed, smear-positive, multidrug-resistant tuberculosis to receive either 400 mg of bedaquiline once daily for 2 weeks, followed by 200 mg three times a week for 22 weeks, or placebo, both in combination with a preferred background regimen. The primary efficacy end point was the time to sputum-culture conversion in liquid broth. Patients were followed for 120 weeks from baseline. Bedaquiline reduced the median time to culture conversion, as compared with placebo, from 125 days to 83 days (hazard ratio in the bedaquiline group, 2.44; 95% confidence interval, 1.57 to 3.80; P<0.001 by Cox regression analysis) and increased the rate of culture conversion at 24 weeks (79% vs. 58%, P=0.008) and at 120 weeks (62% vs. 44%, P=0.04). On the basis of World Health Organization outcome definitions for multidrug-resistant tuberculosis, cure rates at 120 weeks were 58% in the bedaquiline group and 32% in the placebo group (P=0.003). The overall incidence of adverse events was similar in the two groups. There were 10 deaths in the bedaquiline group and 2 in the placebo group, with no causal pattern evident. The addition of bedaquiline to a preferred background regimen for 24 weeks resulted in faster culture conversion and significantly more culture conversions at 120 weeks, as compared with placebo. There were more deaths in the bedaquiline group than in the placebo group. (Funded by Janssen Pharmaceuticals; TMC207-C208 ClinicalTrials.gov number, NCT00449644.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Which QT Correction Formulae to Use for QT Monitoring?

            Background Drug safety precautions recommend monitoring of the corrected QT interval. To determine which QT correction formula to use in an automated QT‐monitoring algorithm in our electronic medical record, we studied rate correction performance of different QT correction formulae and their impact on risk assessment for mortality. Methods and Results All electrocardiograms (ECGs) in patients >18 years with sinus rhythm, normal QRS duration and rate <90 beats per minute (bpm) in the University Hospitals of Leuven (Leuven, Belgium) during a 2‐month period were included. QT correction was performed with Bazett, Fridericia, Framingham, Hodges, and Rautaharju formulae. In total, 6609 patients were included (age, 59.8±16.2 years; 53.6% male and heart rate 68.8±10.6 bpm). Optimal rate correction was observed using Fridericia and Framingham; Bazett performed worst. A healthy subset showed 99% upper limits of normal for Bazett above current clinical standards: men 472 ms (95% CI, 464–478 ms) and women 482 ms (95% CI 474–490 ms). Multivariate Cox regression, including age, heart rate, and prolonged QTc, identified Framingham (hazard ratio [HR], 7.31; 95% CI, 4.10–13.05) and Fridericia (HR, 5.95; 95% CI, 3.34–10.60) as significantly better predictors of 30‐day all‐cause mortality than Bazett (HR, 4.49; 95% CI, 2.31–8.74). In a point‐prevalence study with haloperidol, the number of patients classified to be at risk for possibly harmful QT prolongation could be reduced by 50% using optimal QT rate correction. Conclusions Fridericia and Framingham correction formulae showed the best rate correction and significantly improved prediction of 30‐day and 1‐year mortality. With current clinical standards, Bazett overestimated the number of patients with potential dangerous QTc prolongation, which could lead to unnecessary safety measurements as withholding the patient of first‐choice medication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A comparison of commonly used QT correction formulae: the effect of heart rate on the QTc of normal ECGs.

              The corrected QT interval (QTc) is widely used in pharmaceutical studies and clinical practice. Bazett's QT correction formula is still the most popular, despite Simonson's warning in 1961 that it could not be recommended. Other QTc formulae, e.g. Fridericia, Framingham, and Hodges, are also used. This study compares these four formulae using 10,303 normal ECGs recorded from four US hospitals. QT intervals were measured by the same computer program on ECGs confirmed by physicians. The distributions of QTc based on Fridericia, Framingham, and Hodges formulae were similar but Bazett's was significantly wider. The global group QTc-heart rate (HR) correlation coefficients were calculated as Bazett 0.33, Fridericia 0.24, Framingham 0.26, and Hodges 0.11, with the uncorrected QT-HR correlation being 0.82. Overall by far, Hodges QTc is significantly less correlated with HR compared to the others. Certain subgroup correlations of gender and low, mid, or high HR show that one individual formula can out-perform the others, whereby automated selection of QT correction formula based on the patient's HR and gender could be implemented as another option in products. The upper normal limits of corrected QTc were determined by excluding the top 2% from the global distribution charts as follows: Bazett 483 ms, Fridericia 460 ms, Framingham 457 ms, and Hodges 457 ms. Whether for males and/or females, the middle range of HR from 60 to 99 bpm has similar upper normal limits of QTc for all formulae except Bazett. Numerous references recommend 420 to 440 ms as the threshold for reporting prolonged QTc when using Bazett's formula. Based on this database, 30% of apparently normal ECGs would be reported as having abnormal QT intervals for the 440 ms threshold, or 10% if 460 ms is chosen, compared to <2% for the other formulae. It was also noted that QT has a linear trend with HR but not with RR.
                Bookmark

                Author and article information

                Contributors
                elin.svensson@farmaci.uu.se
                Journal
                CPT Pharmacometrics Syst Pharmacol
                CPT Pharmacometrics Syst Pharmacol
                10.1002/(ISSN)2163-8306
                PSP4
                CPT: Pharmacometrics & Systems Pharmacology
                John Wiley and Sons Inc. (Hoboken )
                2163-8306
                22 October 2021
                December 2021
                : 10
                : 12 ( doiID: 10.1002/psp4.v10.12 )
                : 1538-1549
                Affiliations
                [ 1 ] Department of Pharmacy Uppsala University Uppsala Sweden
                [ 2 ] Department of Pharmacy Radboud Institute for Health Sciences Radboud University Medical Center Nijmegen the Netherlands
                [ 3 ] Department Clinical Pharmacology and Pharmacometrics Janssen Pharmaceutica NV Beerse Belgium
                [ 4 ]Present address: Department of Biostatistics Argenx Ghent Belgium
                Author notes
                [*] [* ] Correspondence

                Elin M. Svensson, Department of Pharmacy, Uppsala University, PO Box 580, 751 23 Uppsala, Sweden.

                Email: elin.svensson@ 123456farmaci.uu.se

                Article
                PSP412722
                10.1002/psp4.12722
                8674006
                34626526
                4415ac81-175a-481d-88d6-b86138cd1e3a
                © 2021 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 02 August 2021
                : 06 July 2021
                : 15 September 2021
                Page count
                Figures: 4, Tables: 3, Pages: 12, Words: 7145
                Funding
                Funded by: Swedish Research Council , doi 10.13039/501100004359;
                Award ID: 521–2011‐3442
                Funded by: European Union's Seventh Framework Programme
                Award ID: 115337
                Funded by: European Federation of Pharmaceutical Industries and Associations
                Funded by: Janssen Pharmaceutica NV
                Categories
                Article
                Research
                Articles
                Custom metadata
                2.0
                December 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.7.0 mode:remove_FC converted:15.12.2021

                Comments

                Comment on this article