7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Receptor-Interacting Protein Kinase 3 Inhibition Relieves Mechanical Allodynia and Suppresses NLRP3 Inflammasome and NF-κB in a Rat Model of Spinal Cord Injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Neuroinflammation is critical in developing and maintaining neuropathic pain after spinal cord injury (SCI). The receptor-interacting protein kinase 3 (RIPK3) has been shown to promote inflammatory response by exerting its non-necroptotic functions. In this study, we explored the involvement of RIPK3 in neuropathic pain after SCI.

          Methods

          Thoracic (T10) SCI rat model was conducted, and the mechanical threshold in rats was measured. The expressions of RIPK3, nod-like receptor family pyrin domain-containing protein 3 (NLRP3), caspase-1, and nuclear factor-κB (NF-κB) were measured with western blotting analysis or quantitative real-time polymerase chain reaction (qRT-PCR). Double immunofluorescence staining was used to explore the colabeled NLRP3 with NeuN, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adapter molecule 1 (IBA1). In addition, enzyme-linked immunosorbent assay (ELISA) was applied to analyze the levels of proinflammatory factors interleukin 1 beta (IL-1β), interleukin 18 (IL-18), and tumor necrosis factor alpha (TNF-α).

          Results

          The expression of RIPK3 was elevated from postoperative days 7–21, which was consistent with the development of mechanical allodynia. Intrathecal administration of RIPK3 inhibitor GSK872 could alleviate the mechanical allodynia in SCI rats and reduce the expression levels of RIPK3. The activation of NLRP3 inflammasome and NF-κB was attenuated by GSK872 treatment. Furthermore, immunofluorescence suggested that NLRP3 had colocalization with glial cells and neurons in the L4–L6 spinal dorsal horns. In addition, GSK872 treatment reduced the production of inflammatory cytokines.

          Conclusion

          Our findings indicated that RIPK3 was an important facilitated factor for SCI-induced mechanical allodynia. RIPK3 inhibition might relieve mechanical allodynia by inhibiting NLRP3 inflammasome, NF-κB, and the associated inflammation.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          NF-κB signaling in inflammation

          The transcription factor NF-κB regulates multiple aspects of innate and adaptive immune functions and serves as a pivotal mediator of inflammatory responses. NF-κB induces the expression of various pro-inflammatory genes, including those encoding cytokines and chemokines, and also participates in inflammasome regulation. In addition, NF-κB plays a critical role in regulating the survival, activation and differentiation of innate immune cells and inflammatory T cells. Consequently, deregulated NF-κB activation contributes to the pathogenic processes of various inflammatory diseases. In this review, we will discuss the activation and function of NF-κB in association with inflammatory diseases and highlight the development of therapeutic strategies based on NF-κB inhibition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation

            The NLRP3 inflammasome is a critical component of the innate immune system that mediates caspase-1 activation and the secretion of proinflammatory cytokines IL-1β/IL-18 in response to microbial infection and cellular damage. However, the aberrant activation of the NLRP3 inflammasome has been linked with several inflammatory disorders, which include cryopyrin-associated periodic syndromes, Alzheimer’s disease, diabetes, and atherosclerosis. The NLRP3 inflammasome is activated by diverse stimuli, and multiple molecular and cellular events, including ionic flux, mitochondrial dysfunction, and the production of reactive oxygen species, and lysosomal damage have been shown to trigger its activation. How NLRP3 responds to those signaling events and initiates the assembly of the NLRP3 inflammasome is not fully understood. In this review, we summarize our current understanding of the mechanisms of NLRP3 inflammasome activation by multiple signaling events, and its regulation by post-translational modifications and interacting partners of NLRP3.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The nuclear factor NF-kappaB pathway in inflammation.

              The nuclear factor NF-kappaB pathway has long been considered a prototypical proinflammatory signaling pathway, largely based on the role of NF-kappaB in the expression of proinflammatory genes including cytokines, chemokines, and adhesion molecules. In this article, we describe how genetic evidence in mice has revealed complex roles for the NF-kappaB in inflammation that suggest both pro- and anti-inflammatory roles for this pathway. NF-kappaB has long been considered the "holy grail" as a target for new anti-inflammatory drugs; however, these recent studies suggest this pathway may prove a difficult target in the treatment of chronic disease. In this article, we discuss the role of NF-kappaB in inflammation in light of these recent studies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                19 April 2022
                2022
                : 15
                : 861312
                Affiliations
                [1] 1Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University , Jinan, China
                [2] 2Departments of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University , Jinan, China
                Author notes

                Edited by: Ildikó Rácz, University Hospital Bonn, Germany

                Reviewed by: Xuhong Wei, Sun Yat-sen University, China; Enrique Verdú, University of Girona, Spain; Renjun Peng, Central South University, China; Han-Rong Weng, California Northstate University, United States; Sheu-Ran Choi, Catholic Kwandong University, South Korea

                *Correspondence: Tao Sun suntaosdph@ 123456163.com

                This article was submitted to Pain Mechanisms and Modulators, a section of the journal Frontiers in Molecular Neuroscience

                †These authors have contributed equally to this work and share first authorship

                Article
                10.3389/fnmol.2022.861312
                9063406
                35514432
                442a2114-88d6-4eaf-b49d-b3fb7dfde135
                Copyright © 2022 Xue, Cao, Wang, Zhao, Han, Yang and Sun.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 January 2022
                : 14 March 2022
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 51, Pages: 12, Words: 6906
                Funding
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Funded by: Natural Science Foundation of Shandong Province, doi 10.13039/501100007129;
                Categories
                Molecular Neuroscience
                Original Research

                Neurosciences
                neuropathic pain after spinal cord injury,receptor-interacting protein kinase 3,nlrp3 inflammasome,nuclear factor-kappa b (nf-κb),gsk872

                Comments

                Comment on this article