33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long non-coding RNA HOTAIR inhibits miR-17-5p to regulate osteogenic differentiation and proliferation in non-traumatic osteonecrosis of femoral head

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and aim

          The biological functions of non-coding RNAs (ncRNAs) have been widely identified in many human diseases. In the present study, the relationship between long non-coding RNA HOTAIR and microRNA-17-5p (miR-17-5p) and their roles in osteogenic differentiation and proliferation in non-traumatic osteonecrosis of femoral head (ONFH) were investigated.

          Methods

          The expression levels of HOTAIR and miR-17-5p in the mesenchymal stem cells (MSCs) derived from patients with non-traumatic ONFH and osteoarthritis (OA) were examined by real-time PCR. BMP-2 induced human MSCs from bone marrow (hMSC-BM) were used for osteogenic differentiation.

          Results

          It was observed that the expression level of miR-17-5p was lower and the level of HOTAIR was higher in samples of non-traumatic ONFH compared with OA. HOTAIR downregulation induced by si-HOTAIR led to the increase of miR-17-5p expression and the decrease of miR-17-5p target gene SMAD7 expression. The values of osteogenic differentiation markers, including RUNX2 and COL1A1 mRNA expression and ALP activity, were also elevated by si-HOTAIR. However, the increase of these values was canceled by miR-17-5p inhibitor or SMAD7 upregulation.

          Conclusion

          HOTAIR played a role in regulating osteogenic differentiation and proliferation through modulating miR-17-5p and its target gene SMAD7 in non-traumatic ONFH.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          A microRNA signature for a BMP2-induced osteoblast lineage commitment program.

          Bone morphogenetic proteins (BMPs) are potent morphogens that activate transcriptional programs for lineage determination. How BMP induction of a phenotype is coordinated with microRNAs (miRNAs) that inhibit biological pathways to control cell differentiation, remains unknown. Here, we show by profiling miRNAs during BMP2 induced osteogenesis of C2C12 mesenchymal cells, that 22 of 25 miRNAs which significantly changed in response to BMP2 are down-regulated. These miRNAs are each predicted to target components of multiple osteogenic pathways. We characterize two representative miRNAs and show that miR-133 directly targets Runx2, an early BMP response gene essential for bone formation, and miR-135 targets Smad5, a key transducer of the BMP2 osteogenic signal, controlled through their 3'UTR sequences. Both miRNAs functionally inhibit differentiation of osteoprogenitors by attenuating Runx2 and Smad5 pathways that synergistically contribute to bone formation. Although miR-133 is known to promote MEF-2-dependent myogenesis, we have identified a second complementary function to inhibit Runx2-mediated osteogenesis. Our key finding is that BMP2 controls bone cell determination by inducing miRNAs that target muscle genes but mainly by down-regulating multiple miRNAs that constitute an osteogenic program, thereby releasing from inhibition pathway components required for cell lineage commitment. Thus, our studies establish a mechanism for BMP morphogens to selectively induce a tissue-specific phenotype and suppress alternative lineages.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HOTAIR long non-coding RNA is a negative prognostic factor not only in primary tumors, but also in the blood of colorectal cancer patients.

            Colorectal cancer (CRC) is one of the main causes of death of neoplasia. Demand for predictive and prognostic markers to reverse this trend is increasing. Long non-coding RNA HOTAIR (Homeobox Transcript Antisense Intergenic RNA) overexpression in tumors was previously associated with poor prognosis and higher mortality in different carcinomas. We analyzed HOTAIR expression levels in tumor and blood of incident sporadic CRC patients in relation to their overall survival with the aim to evaluate surrogate prognostic marker for CRC. Tissue donor group consisted of 73 CRC patients sampled for tumor and normal tissue. Blood donor group was represented by 84 CRC patients compared with 40 healthy controls. Patients were characterized for tumor-node-metastasis stage, tumor grade, microsatellite instability and tumor penetration by stromal cells. HOTAIR levels were assessed by real-time quantitative PCR. CRC patients had higher HOTAIR expression in blood than healthy controls (P = 0.0001), whereas there was no difference in HOTAIR levels between tumor and adjacent mucosa of CRC patients. HOTAIR levels positively correlated between blood and tumor (R = 0.43, P = 0.03). High HOTAIR levels in tumors were associated with higher mortality of patients [Cox's proportional hazard, hazard ratio = 4.4, 95% confidence interval: 1.0-19.2, P = 0.046]. The hazard ratio was even higher when blood HOTAIR levels were taken into account (hazard ratio = 5.9, 95% confidence interval: 1.3-26.1, P = 0.019). Upregulated HOTAIR relative expression in primary tumors and in blood of CRC patients is associated with unfavorable prognosis. Our data suggest that HOTAIR blood levels may serve as potential surrogate prognostic marker in sporadic CRC. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Both mature miR-17-5p and passenger strand miR-17-3p target TIMP3 and induce prostate tumor growth and invasion

              MicroRNAs (miRNA) precursor (pre-miRNA) molecules can be processed to release a miRNA/miRNA* duplex. In the canonical model of miRNA biogenesis, one strand of the duplex is thought to be the biologically active miRNA, whereas the other strand is thought to be inactive and degraded as a carrier or passenger strand called miRNA* (miRNA star). However, recent studies have revealed that miRNA* strands frequently play roles in the regulatory networks of miRNA target molecules. Our recent study indicated that miR-17 transgenic mice could abundantly express both the mature miR-17-5p and the passenger strand miR-17-3p. Here, we showed that miR-17 enhanced prostate tumor growth and invasion by increasing tumor cell proliferation, colony formation, cell survival and invasion. miRNA target analysis showed that both miR-17-5p and miR-17-3p repressed TIMP metallopeptidase inhibitor 3 (TIMP3) expression. Silencing with small interfering RNA against TIMP3 promoted cell survival and invasion. Ectopic expression of TIMP3 decreased cell invasion and cell survival. Our results demonstrated that mature miRNA can function coordinately with its passenger strand, enhancing the repressive ability of a miRNA by binding the same target. Within an intricate regulatory network, this may be among the mechanisms by which miRNA can augment their regulatory capacity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                16 February 2017
                2017
                : 12
                : 2
                : e0169097
                Affiliations
                [1 ]Department of Orthopaedic, Linyi People’s Hospital, Linyi, Shandong, China
                [2 ]Department of Orthopaedic, First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
                Augusta University, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                • Conceptualization: BFW.

                • Data curation: XXG.

                • Formal analysis: WW.

                • Funding acquisition: BFW.

                • Investigation: BFW.

                • Methodology: BFW WW.

                • Project administration: BFW.

                • Resources: BFW.

                • Software: BXZ SL.

                • Supervision: BFW WW.

                • Validation: BFW.

                • Writing – original draft: BFW.

                • Writing – review & editing: WW.

                Article
                PONE-D-16-33689
                10.1371/journal.pone.0169097
                5312925
                28207735
                447f2435-c08d-4939-a8c2-e01e1517b1aa
                © 2017 Wei et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 August 2016
                : 11 December 2016
                Page count
                Figures: 7, Tables: 0, Pages: 14
                Funding
                The work was funded by the Science and Technology Development Plan of Shandong Province (Grant Number: 2014GSF119022). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Developmental Biology
                Cell Differentiation
                Osteoblast Differentiation
                Medicine and Health Sciences
                Rheumatology
                Arthritis
                Osteoarthritis
                Biology and Life Sciences
                Genetics
                Gene Expression
                Biology and life sciences
                Cell biology
                Chromosome biology
                Chromatin
                Chromatin modification
                DNA methylation
                Biology and life sciences
                Genetics
                Epigenetics
                Chromatin
                Chromatin modification
                DNA methylation
                Biology and life sciences
                Genetics
                Gene expression
                Chromatin
                Chromatin modification
                DNA methylation
                Biology and life sciences
                Genetics
                DNA
                DNA modification
                DNA methylation
                Biology and life sciences
                Biochemistry
                Nucleic acids
                DNA
                DNA modification
                DNA methylation
                Biology and life sciences
                Genetics
                Epigenetics
                DNA modification
                DNA methylation
                Biology and life sciences
                Genetics
                Gene expression
                DNA modification
                DNA methylation
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Stem Cells
                Mesenchymal Stem Cells
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Research and Analysis Methods
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Biology and life sciences
                Genetics
                Gene expression
                Gene regulation
                MicroRNAs
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Non-coding RNA
                MicroRNAs
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Transfection
                Research and Analysis Methods
                Molecular Biology Techniques
                Transfection
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article