Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
164
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ku70 Is Required for Late B Cell Development and Immunoglobulin Heavy Chain Class Switching

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immunoglobulin (Ig) heavy chain (HC) class switch recombination (CSR) is a late B cell process that involves intrachromosomal DNA rearrangement. Ku70 and Ku80 form a DNA end-binding complex required for DNA double strand break repair and V(D)J recombination. Ku70 −/− (K70T) mice, like recombination activating gene (RAG)-1– or RAG-2–deficient (R1T or R2T) mice, have impaired B and T cell development at an early progenitor stage, which is thought to result at least in part from defective V(D)J recombination (Gu, Y., K.J. Seidl, G.A. Rathbun, C. Zhu, J.P. Manis, N. van der Stoep, L. Davidson, H.L. Cheng, J.M. Sekiguchi, K. Frank, et al. 1997. Immunity. 7:653–665; Ouyang, H., A. Nussenzweig, A. Kurimasa, V.C. Soares, X. Li, C. Cordon-Cardo, W. Li, N. Cheong, M. Nussenzweig, G. Iliakis, et al. 1997. J. Exp. Med. 186:921–929). Therefore, to examine the potential role of Ku70 in CSR, we generated K70T mice that carry a germline Ig HC locus in which the JH region was replaced with a functionally rearranged VH(D)JH and Ig λ light chain transgene (referred to as K70T/HL mice). Previously, we have shown that B cells from R1T or R2T mice carrying these rearranged Ig genes (R1T/HL or R2T/HL mice) can undergo CSR to IgG isotypes (Lansford, R., J. Manis, E. Sonoda, K. Rajewsky, and F. Alt. 1998. Int. Immunol. 10:325–332). K70T/HL mice had significant numbers of peripheral surface IgM + B cells, which generated serum IgM levels similar to those of R2T/HL mice. However, in contrast to R2T/HL mice, K70T/HL mice had no detectable serum IgG isotypes. In vitro culture of K70T/HL B cells with agents that induce CSR in normal or R2T/HL B cells did lead to the induction of germline CH transcripts, indicating that initial signaling pathways for CSR were intact in K70T/HL cells. However, treatment with such agents did not lead to detectable CSR by K70T/HL B cells, and instead, led to cell death within 72 h. We conclude that Ku70 is required for the generation of B cells that have undergone Ig HC class switching. Potential roles for Ku70 in the CSR process are discussed.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Somatic generation of antibody diversity.

          In the genome of a germ-line cell, the genetic information for an immunoglobulin polypeptide chain is contained in multiple gene segments scattered along a chromosome. During the development of bone marrow-derived lymphocytes, these gene segments are assembled by recombination which leads to the formation of a complete gene. In addition, mutations are somatically introduced at a high rate into the amino-terminal region. Both somatic recombination and mutation contribute greatly to an increase in the diversity of antibody synthesized by a single organism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lymphokine control of in vivo immunoglobulin isotype selection.

            Several specific conclusions can be drawn from these studies: 1. IL-4 is required for the generation of both primary polyclonal and secondary antigen-specific IgE responses in vivo. 2. IL-4 is required to maintain established, ongoing, antigen-specific and polyclonal IgE responses. 3. Most, but not all, polyclonal IgE production during a secondary immune response is IL-4-dependent. Memory B cells that have already switched to IgE at the DNA level may no longer require stimulation with IL-4 to be induced to secrete IgE. 4. The generation of a secondary IgE response is not dependent upon the presence of IL-4 during primary immunization. However, if IL-4 is not present during primary immunization, it is required during secondary immunization for the generation of an IgE response. 5. IL-4 does not appear to be required for the generation of in vivo IgG1 responses, and in at least some instances, does not contribute significantly to the generation of IgG1 responses in vivo. 6. A late-acting form of T-cell help other than IL-4 appears to be required for the generation of an IgE, but not an IgG1 response. 7. An antibody that inhibits IL-4 binding to IL-4 receptors affects Ig isotype selection in the same way as an antibody that neutralizes IL-4. 8. IFN-gamma can act in both spontaneous and induced immune responses to suppress IgE production. 9. IFN-gamma can also suppress IgG1 production and stimulate IgG2a production. However, IFN-gamma appears to suppress polyclonal IgG1 responses more than antigen-specific IgG1 responses, and it enhances, but is not required for, the generation of IgG2a responses. 10. IFN-alpha appears to resemble IFN-gamma in its ability to inhibit IgE and enhance IgG2a responses in GaM delta-injected mice, but it requires the presence of IFN-gamma to suppress IgG1 production in these mice. 11. Both IFN-alpha and IFN-gamma appear to be able to decrease IgE production in some human patients. 12. There is no direct evidence that IL-5 contributes to the generation of in vivo antibody responses. Two general conclusions may also be drawn.(ABSTRACT TRUNCATED AT 400 WORDS)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen.

              The DNA-dependent protein kinase (DNA-PK) phosphorylates Sp1 and several other nuclear proteins. Here, we show that Sp1 and the DNA-PK must be colocalized on the same DNA molecule for efficient phosphorylation to occur. Interestingly, we find that the DNA-PK binds to and is activated by the ends of DNA molecules. Furthermore, we show that the DNA binding properties of the DNA-PK are identical to those of Ku, a well-characterized human autoimmune antigen. We demonstrate that the DNA-PK can be fractionated into two components, one of which is Ku and the other of which is a polypeptide of approximately 350 kd. DNA cross-linking and coimmunoprecipitation studies indicate that the catalytic 350 kd DNA-PK component is directed to DNA by protein-protein interactions with Ku. The implications of the unusual DNA binding mode and multicomponent nature of the DNA-PK are discussed.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                15 June 1998
                : 187
                : 12
                : 2081-2089
                Affiliations
                From the [* ]Howard Hughes Medical Institute, Boston, Massachusetts 02115; the []Children's Hospital, Boston, Massachusetts 02115; the [§ ]Center for Blood Research and the []Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115; the []Department of Molecular Immunology and Allergy, Kyoto University, Kyoto 606-01, Japan; and the [** ]Institute for Genetics, University of Cologne, 5000 Cologne 41, Germany
                Author notes

                Address correspondence to Frederick W. Alt, The Howard Hughes Medical Institute, The Children's Hospital, 861, 320 Longwood Ave., Boston, MA 02115. Phone: 617-355-7290; Fax: 617-730-0432; E-mail: alt@ 123456rascal.med.harvard.edu

                Article
                10.1084/jem.187.12.2081
                2212369
                9625768
                44a0f614-bb1e-4030-a92b-bcd2af99cc84
                Copyright @ 1998
                History
                : 19 March 1998
                Categories
                Articles

                Medicine
                immunoglobulin class switch recombination,ku70,recombination activating gene 2,b cell development

                Comments

                Comment on this article