24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Research on the human virome: where are we and what is next

      case-report
      , , , ,
      Microbiome
      BioMed Central
      Microbiome, Virome, Heart, Lung, Blood, HIV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health convened a Working Group on the Microbiome in Cardiovascular, Pulmonary and Hematologic Health and Diseases from June 25, 2014, to June 26, 2014. The Working Group’s central goal was to define what major microbiome research areas warranted additional study in the context of heart, lung, and blood (HLB) diseases. The Working Group identified studies of the human virome a key priority.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          The airway epithelium: soldier in the fight against respiratory viruses.

          The airway epithelium acts as a frontline defense against respiratory viruses, not only as a physical barrier and through the mucociliary apparatus but also through its immunological functions. It initiates multiple innate and adaptive immune mechanisms which are crucial for efficient antiviral responses. The interaction between respiratory viruses and airway epithelial cells results in production of antiviral substances, including type I and III interferons, lactoferrin, β-defensins, and nitric oxide, and also in production of cytokines and chemokines, which recruit inflammatory cells and influence adaptive immunity. These defense mechanisms usually result in rapid virus clearance. However, respiratory viruses elaborate strategies to evade antiviral mechanisms and immune responses. They may disrupt epithelial integrity through cytotoxic effects, increasing paracellular permeability and damaging epithelial repair mechanisms. In addition, they can interfere with immune responses by blocking interferon pathways and by subverting protective inflammatory responses toward detrimental ones. Finally, by inducing overt mucus secretion and mucostasis and by paving the way for bacterial infections, they favor lung damage and further impair host antiviral mechanisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The virome in mammalian physiology and disease.

            The virome contains the most abundant and fastest mutating genetic elements on Earth. The mammalian virome is constituted of viruses that infect host cells, virus-derived elements in our chromosomes, and viruses that infect the broad array of other types of organisms that inhabit us. Virome interactions with the host cannot be encompassed by a monotheistic view of viruses as pathogens. Instead, the genetic and transcriptional identity of mammals is defined in part by our coevolved virome, a concept with profound implications for understanding health and disease. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome.

              Viruses are the most abundant known infectious agents on the planet and are significant drivers of diversity in a variety of ecosystems. Although there have been numerous studies of viral communities, few have focused on viruses within the indigenous human microbiota. We analyzed 2 267 695 virome reads from viral particles and compared them with 263 516 bacterial 16S rRNA gene sequences from the saliva of five healthy human subjects over a 2- to 3-month period, in order to improve our understanding of the role viruses have in the complex oral ecosystem. Our data reveal viral communities in human saliva dominated by bacteriophages whose constituents are temporally distinct. The preponderance of shared homologs between the salivary viral communities in two unrelated subjects in the same household suggests that environmental factors are determinants of community membership. When comparing salivary viromes to those from human stool and the respiratory tract, each group was distinct, further indicating that habitat is of substantial importance in shaping human viromes. Compared with coexisting bacteria, there was concordance among certain predicted host-virus pairings such as Veillonella and Streptococcus, whereas there was discordance among others such as Actinomyces. We identified 122 728 virulence factor homologs, suggesting that salivary viruses may serve as reservoirs for pathogenic gene function in the oral environment. That the vast majority of human oral viruses are bacteriophages whose putative gene function signifies some have a prominent role in lysogeny, suggests these viruses may have an important role in helping shape the microbial diversity in the human oral cavity.
                Bookmark

                Author and article information

                Contributors
                301-435-0074 , 301-480-1046 , shimian.zou@nih.gov
                lis.caler@nih.gov
                hatchs@nhlbi.nih.gov
                glynnsa@nhlbi.nih.gov
                srinivap@nhlbi.nih.gov
                Journal
                Microbiome
                Microbiome
                Microbiome
                BioMed Central (London )
                2049-2618
                24 June 2016
                24 June 2016
                2016
                : 4
                : 32
                Affiliations
                National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6701, Rockledge Drive, Room 9144, Bethesda, MD 20892-7950 USA
                Author information
                http://orcid.org/0000-0002-4331-2739
                Article
                177
                10.1186/s40168-016-0177-y
                4919837
                27341799
                45302311-a1d5-42bb-83c0-9e7b065de0d5
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 15 April 2016
                : 10 June 2016
                Categories
                Meeting Report
                Custom metadata
                © The Author(s) 2016

                microbiome,virome,heart,lung,blood,hiv
                microbiome, virome, heart, lung, blood, hiv

                Comments

                Comment on this article