8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Exploiting Interlimb Arm and Leg Connections for Walking Rehabilitation: A Training Intervention in Stroke

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rhythmic arm and leg (A&L) movements share common elements of neural control. The extent to which A&L cycling training can lead to training adaptations which transfer to improved walking function remains untested. The purpose of this study was to test the efficacy of A&L cycling training as a modality to improve locomotor function after stroke. Nineteen chronic stroke (>six months) participants were recruited and performed 30 minutes of A&L cycling training three times a week for five weeks. Changes in walking function were assessed with (1) clinical tests; (2) strength during isometric contractions; and (3) treadmill walking performance and cutaneous reflex modulation. A multiple baseline (3 pretests) within-subject control design was used. Data show that A&L cycling training improved clinical walking status increased strength by ~25%, improved modulation of muscle activity by ~25%, increased range of motion by ~20%, decreased stride duration, increased frequency, and improved modulation of cutaneous reflexes during treadmill walking. On most variables, the majority of participants showed a significant improvement in walking ability. These results suggest that exploiting arm and leg connections with A&L cycling training, an accessible and cost-effective training modality, could be used to improve walking ability after stroke.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Development of recommendations for SEMG sensors and sensor placement procedures.

          The knowledge of surface electromyography (SEMG) and the number of applications have increased considerably during the past ten years. However, most methodological developments have taken place locally, resulting in different methodologies among the different groups of users.A specific objective of the European concerted action SENIAM (surface EMG for a non-invasive assessment of muscles) was, besides creating more collaboration among the various European groups, to develop recommendations on sensors, sensor placement, signal processing and modeling. This paper will present the process and the results of the development of the recommendations for the SEMG sensors and sensor placement procedures. Execution of the SENIAM sensor tasks, in the period 1996-1999, has been handled in a number of partly parallel and partly sequential activities. A literature scan was carried out on the use of sensors and sensor placement procedures in European laboratories. In total, 144 peer-reviewed papers were scanned on the applied SEMG sensor properties and sensor placement procedures. This showed a large variability of methodology as well as a rather insufficient description. A special workshop provided an overview on the scientific and clinical knowledge of the effects of sensor properties and sensor placement procedures on the SEMG characteristics. Based on the inventory, the results of the topical workshop and generally accepted state-of-the-art knowledge, a first proposal for sensors and sensor placement procedures was defined. Besides containing a general procedure and recommendations for sensor placement, this was worked out in detail for 27 different muscles. This proposal was evaluated in several European laboratories with respect to technical and practical aspects and also sent to all members of the SENIAM club (>100 members) together with a questionnaire to obtain their comments. Based on this evaluation the final recommendations of SENIAM were made and published (SENIAM 8: European recommendations for surface electromyography, 1999), both as a booklet and as a CD-ROM. In this way a common body of knowledge has been created on SEMG sensors and sensor placement properties as well as practical guidelines for the proper use of SEMG.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A systematic review of the evidence for Canada's Physical Activity Guidelines for Adults

            This systematic review examines critically the scientific basis for Canada's Physical Activity Guide for Healthy Active Living for adults. Particular reference is given to the dose-response relationship between physical activity and premature all-cause mortality and seven chronic diseases (cardiovascular disease, stroke, hypertension, colon cancer, breast cancer, type 2 diabetes (diabetes mellitus) and osteoporosis). The strength of the relationship between physical activity and specific health outcomes is evaluated critically. Literature was obtained through searching electronic databases (e.g., MEDLINE, EMBASE), cross-referencing, and through the authors' knowledge of the area. For inclusion in our systematic review articles must have at least 3 levels of physical activity and the concomitant risk for each chronic disease. The quality of included studies was appraised using a modified Downs and Black tool. Through this search we identified a total of 254 articles that met the eligibility criteria related to premature all-cause mortality (N = 70), cardiovascular disease (N = 49), stroke (N = 25), hypertension (N = 12), colon cancer (N = 33), breast cancer (N = 43), type 2 diabetes (N = 20), and osteoporosis (N = 2). Overall, the current literature supports clearly the dose-response relationship between physical activity and the seven chronic conditions identified. Moreover, higher levels of physical activity reduce the risk for premature all-cause mortality. The current Canadian guidelines appear to be appropriate to reduce the risk for the seven chronic conditions identified above and all-cause mortality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery.

              Stroke remains a leading cause of adult disability. Some degree of spontaneous behavioral recovery is usually seen in the weeks after stroke onset. Variability in recovery is substantial across human patients. Some principles have emerged; for example, recovery occurs slowest in those destined to have less successful outcomes. Animal studies have extended these observations, providing insight into a broad range of underlying molecular and physiological events. Brain mapping studies in human patients have provided observations at the systems level that often parallel findings in animals. In general, the best outcomes are associated with the greatest return toward the normal state of brain functional organization. Reorganization of surviving central nervous system elements supports behavioral recovery, for example, through changes in interhemispheric lateralization, activity of association cortices linked to injured zones, and organization of cortical representational maps. A number of factors influence events supporting stroke recovery, such as demographics, behavioral experience, and perhaps genetics. Such measures gain importance when viewed as covariates in therapeutic trials of restorative agents that target stroke recovery.
                Bookmark

                Author and article information

                Journal
                Neural Plast
                Neural Plast
                NP
                Neural Plasticity
                Hindawi Publishing Corporation
                2090-5904
                1687-5443
                2016
                23 June 2016
                : 2016
                : 1517968
                Affiliations
                1Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC, Canada V8W 3N4
                2Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada V5Z 1M9
                3Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada V8W 2Y2
                4Division of Medical Sciences, University of Victoria, Victoria, BC, Canada V8W 2Y2
                Author notes
                *Taryn Klarner: tklarner@ 123456uvic.ca

                Academic Editor: Prithvi Shah

                Author information
                http://orcid.org/0000-0003-1666-7953
                http://orcid.org/0000-0003-3466-2750
                http://orcid.org/0000-0002-0178-3612
                http://orcid.org/0000-0003-3730-7439
                Article
                10.1155/2016/1517968
                4926010
                27403344
                453389e2-ca18-40a9-9d79-1f79891b19c0
                Copyright © 2016 Taryn Klarner et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 February 2016
                : 20 April 2016
                : 10 May 2016
                Funding
                Funded by: http://dx.doi.org/10.13039/501100000222 Heart and Stroke Foundation of Canada
                Categories
                Clinical Study

                Neurosciences
                Neurosciences

                Comments

                Comment on this article

                scite_

                Similar content22

                Cited by16

                Most referenced authors1,129