7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitochondrial Dysfunction and Oxidative Stress Caused by Cryopreservation in Reproductive Cells

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondria, fundamental organelles in cell metabolism, and ATP synthesis are responsible for generating reactive oxygen species (ROS), calcium homeostasis, and cell death. Mitochondria produce most ROS, and when levels exceed the antioxidant defenses, oxidative stress (OS) is generated. These changes may eventually impair the electron transport chain, resulting in decreased ATP synthesis, increased ROS production, altered mitochondrial membrane permeability, and disruption of calcium homeostasis. Mitochondria play a key role in the gamete competence to facilitate normal embryo development. However, iatrogenic factors in assisted reproductive technologies (ART) may affect their functional competence, leading to an abnormal reproductive outcome. Cryopreservation, a fundamental technology in ART, may compromise mitochondrial function leading to elevated intracellular OS that decreases sperm and oocytes’ competence and the dynamics of fertilization and embryo development. This article aims to review the role played by mitochondria and ROS in sperm and oocyte function and the close, biunivocal relationships between mitochondrial damage and ROS generation during cryopreservation of gametes and gonadal tissues in different species. Based on current literature, we propose tentative hypothesis of mechanisms involved in cryopreservation-associated mitochondrial dysfunction in gametes, and discuss the role played by antioxidants and other agents to retain the competence of cryopreserved reproductive cells and tissues.

          Related collections

          Most cited references240

          • Record: found
          • Abstract: found
          • Article: not found

          Calcium signaling.

          Calcium ions (Ca(2+)) impact nearly every aspect of cellular life. This review examines the principles of Ca(2+) signaling, from changes in protein conformations driven by Ca(2+) to the mechanisms that control Ca(2+) levels in the cytoplasm and organelles. Also discussed is the highly localized nature of Ca(2+)-mediated signal transduction and its specific roles in excitability, exocytosis, motility, apoptosis, and transcription.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Free radicals and antioxidants in normal physiological functions and human disease.

            Reactive oxygen species (ROS) and reactive nitrogen species (RNS, e.g. nitric oxide, NO(*)) are well recognised for playing a dual role as both deleterious and beneficial species. ROS and RNS are normally generated by tightly regulated enzymes, such as NO synthase (NOS) and NAD(P)H oxidase isoforms, respectively. Overproduction of ROS (arising either from mitochondrial electron-transport chain or excessive stimulation of NAD(P)H) results in oxidative stress, a deleterious process that can be an important mediator of damage to cell structures, including lipids and membranes, proteins, and DNA. In contrast, beneficial effects of ROS/RNS (e.g. superoxide radical and nitric oxide) occur at low/moderate concentrations and involve physiological roles in cellular responses to noxia, as for example in defence against infectious agents, in the function of a number of cellular signalling pathways, and the induction of a mitogenic response. Ironically, various ROS-mediated actions in fact protect cells against ROS-induced oxidative stress and re-establish or maintain "redox balance" termed also "redox homeostasis". The "two-faced" character of ROS is clearly substantiated. For example, a growing body of evidence shows that ROS within cells act as secondary messengers in intracellular signalling cascades which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. This review will describe the: (i) chemistry and biochemistry of ROS/RNS and sources of free radical generation; (ii) damage to DNA, to proteins, and to lipids by free radicals; (iii) role of antioxidants (e.g. glutathione) in the maintenance of cellular "redox homeostasis"; (iv) overview of ROS-induced signaling pathways; (v) role of ROS in redox regulation of normal physiological functions, as well as (vi) role of ROS in pathophysiological implications of altered redox regulation (human diseases and ageing). Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), rheumatoid arthritis, and ageing. Topics of current debate are also reviewed such as the question whether excessive formation of free radicals is a primary cause or a downstream consequence of tissue injury.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              How mitochondria produce reactive oxygen species

              The production of ROS (reactive oxygen species) by mammalian mitochondria is important because it underlies oxidative damage in many pathologies and contributes to retrograde redox signalling from the organelle to the cytosol and nucleus. Superoxide (O2 •−) is the proximal mitochondrial ROS, and in the present review I outline the principles that govern O2 •− production within the matrix of mammalian mitochondria. The flux of O2 •− is related to the concentration of potential electron donors, the local concentration of O2 and the second-order rate constants for the reactions between them. Two modes of operation by isolated mitochondria result in significant O2 •− production, predominantly from complex I: (i) when the mitochondria are not making ATP and consequently have a high Δp (protonmotive force) and a reduced CoQ (coenzyme Q) pool; and (ii) when there is a high NADH/NAD+ ratio in the mitochondrial matrix. For mitochondria that are actively making ATP, and consequently have a lower Δp and NADH/NAD+ ratio, the extent of O2 •− production is far lower. The generation of O2 •− within the mitochondrial matrix depends critically on Δp, the NADH/NAD+ and CoQH2/CoQ ratios and the local O2 concentration, which are all highly variable and difficult to measure in vivo. Consequently, it is not possible to estimate O2 •− generation by mitochondria in vivo from O2 •−-production rates by isolated mitochondria, and such extrapolations in the literature are misleading. Even so, the description outlined here facilitates the understanding of factors that favour mitochondrial ROS production. There is a clear need to develop better methods to measure mitochondrial O2 •− and H2O2 formation in vivo, as uncertainty about these values hampers studies on the role of mitochondrial ROS in pathological oxidative damage and redox signalling.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Antioxidants (Basel)
                Antioxidants (Basel)
                antioxidants
                Antioxidants
                MDPI
                2076-3921
                24 February 2021
                March 2021
                : 10
                : 3
                : 337
                Affiliations
                [1 ]Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; barbato_vincenza@ 123456libero.it (V.B.); dinardomaddalena@ 123456gmail.com (M.D.N.); riccardo.talevi@ 123456unina.it (R.T.)
                [2 ]Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576 104, India; guru.kalthur@ 123456manipal.edu (G.K.); satish.adiga@ 123456manipal.edu (S.K.A.)
                [3 ]Centre for Fertility Preservation, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
                Author notes
                Author information
                https://orcid.org/0000-0002-0424-5254
                https://orcid.org/0000-0002-4554-2917
                Article
                antioxidants-10-00337
                10.3390/antiox10030337
                7996228
                33668300
                455c1c59-ad31-4cfb-99ea-067b686d8bcc
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 February 2021
                : 20 February 2021
                Categories
                Review

                mitochondria,cryopreservation,oxidative stress,sperm,oocyte,gonadal tissue

                Comments

                Comment on this article