7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Middle East respiratory syndrome coronavirus (MERS-CoV) causes life-threatening disease. Dipeptidyl peptidase 4 (DPP4) is the receptor for cell binding and entry. There is a need for small-animal models of MERS, but mice are not susceptible to MERS because murine dpp4 does not serve as a receptor. We developed transgenic mice expressing human DPP4 (hDPP4) under the control of the surfactant protein C promoter or cytokeratin 18 promoter that are susceptible to infection with MERS-CoV. Notably, mice expressing hDPP4 with the cytokeratin 18 promoter developed progressive, uniformly fatal disease following intranasal inoculation. High virus titers were present in lung and brain tissues 2 and 6 days after infection, respectively. MERS-CoV–infected lungs revealed mononuclear cell infiltration, alveolar edema, and microvascular thrombosis, with airways generally unaffected. Brain disease was observed, with the greatest involvement noted in the thalamus and brain stem. Animals immunized with a vaccine candidate were uniformly protected from lethal infection. These new mouse models of MERS-CoV should be useful for investigation of early disease mechanisms and therapeutic interventions.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.

          A previously unknown coronavirus was isolated from the sputum of a 60-year-old man who presented with acute pneumonia and subsequent renal failure with a fatal outcome in Saudi Arabia. The virus (called HCoV-EMC) replicated readily in cell culture, producing cytopathic effects of rounding, detachment, and syncytium formation. The virus represents a novel betacoronavirus species. The closest known relatives are bat coronaviruses HKU4 and HKU5. Here, the clinical data, virus isolation, and molecular identification are presented. The clinical picture was remarkably similar to that of the severe acute respiratory syndrome (SARS) outbreak in 2003 and reminds us that animal coronaviruses can cause severe disease in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Hospital Outbreak of Middle East Respiratory Syndrome Coronavirus

            In September 2012, the World Health Organization reported the first cases of pneumonia caused by the novel Middle East respiratory syndrome coronavirus (MERS-CoV). We describe a cluster of health care-acquired MERS-CoV infections. Medical records were reviewed for clinical and demographic information and determination of potential contacts and exposures. Case patients and contacts were interviewed. The incubation period and serial interval (the time between the successive onset of symptoms in a chain of transmission) were estimated. Viral RNA was sequenced. Between April 1 and May 23, 2013, a total of 23 cases of MERS-CoV infection were reported in the eastern province of Saudi Arabia. Symptoms included fever in 20 patients (87%), cough in 20 (87%), shortness of breath in 11 (48%), and gastrointestinal symptoms in 8 (35%); 20 patients (87%) presented with abnormal chest radiographs. As of June 12, a total of 15 patients (65%) had died, 6 (26%) had recovered, and 2 (9%) remained hospitalized. The median incubation period was 5.2 days (95% confidence interval [CI], 1.9 to 14.7), and the serial interval was 7.6 days (95% CI, 2.5 to 23.1). A total of 21 of the 23 cases were acquired by person-to-person transmission in hemodialysis units, intensive care units, or in-patient units in three different health care facilities. Sequencing data from four isolates revealed a single monophyletic clade. Among 217 household contacts and more than 200 health care worker contacts whom we identified, MERS-CoV infection developed in 5 family members (3 with laboratory-confirmed cases) and in 2 health care workers (both with laboratory-confirmed cases). Person-to-person transmission of MERS-CoV can occur in health care settings and may be associated with considerable morbidity. Surveillance and infection-control measures are critical to a global public health response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus.

              The severe acute respiratory syndrome (SARS), caused by a novel coronavirus (SARS-CoV), resulted in substantial morbidity, mortality, and economic losses during the 2003 epidemic. While SARS-CoV infection has not recurred to a significant extent since 2003, it still remains a potential threat. Understanding of SARS and development of therapeutic approaches have been hampered by the absence of an animal model that mimics the human disease and is reproducible. Here we show that transgenic mice that express the SARS-CoV receptor (human angiotensin-converting enzyme 2 [hACE2]) in airway and other epithelia develop a rapidly lethal infection after intranasal inoculation with a human strain of the virus. Infection begins in airway epithelia, with subsequent alveolar involvement and extrapulmonary virus spread to the brain. Infection results in macrophage and lymphocyte infiltration in the lungs and upregulation of proinflammatory cytokines and chemokines in both the lung and the brain. This model of lethal infection with SARS-CoV should be useful for studies of pathogenesis and for the development of antiviral therapies.
                Bookmark

                Author and article information

                Journal
                J Infect Dis
                J. Infect. Dis
                jid
                jinfdis
                The Journal of Infectious Diseases
                Oxford University Press
                0022-1899
                1537-6613
                01 March 2016
                20 October 2015
                : 213
                : 5
                : 712-722
                Affiliations
                [1 ] Department of Pediatrics
                [2 ] Department of Microbiology
                [3 ] Department of Internal Medicine
                [4 ] Department of Pathology
                [5 ] Interdisciplinary Program in Immunology, University of Iowa , Iowa City
                Author notes
                Correspondence: P. B. McCray, Department of Pediatrics, 6320 PBDB, University of Iowa, Iowa City, IA 52242 ( paul-mccray@ 123456uiowa.edu ).
                Article
                jiv499
                10.1093/infdis/jiv499
                4747621
                26486634
                4569c0a1-e24d-46c3-9ae4-56801196327f
                © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@ 123456oup.com .

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                : 25 June 2015
                : 8 October 2015
                Funding
                Funded by: National Institutes of Health http://dx.doi.org/10.13039/100000002
                Funded by: NIH
                Award ID: PO1 AI060699
                Funded by: Cell Morphology Core and Pathology Core
                Funded by: Center for Gene Therapy for Cystic Fibrosis
                Funded by: NIH
                Award ID: P30 DK-54759
                Funded by: Cystic Fibrosis Foundation http://dx.doi.org/10.13039/100000897
                Funded by: College of Medicine
                Funded by: Center for Gene Therapy for Cystic Fibrosis
                Funded by: Roy J. Carver Charitable Trust http://dx.doi.org/10.13039/100001024
                Categories
                Major Articles and Brief Reports
                Viruses

                Infectious disease & Microbiology
                transgenic mice,mers,dpp4/cd26
                Infectious disease & Microbiology
                transgenic mice, mers, dpp4/cd26

                Comments

                Comment on this article