16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Mechanism of Atopic Dermatitis Induction Following Sensitization and Challenge with 2,4-Dinitrochlorobenzene in Mouse Skin Tissue

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Laboratory animal models have been developed to investigate preventive or therapeutic effect of medicinal products, or occurrence or progression mechanism of atopic dermatitis (AD), a pruritic and persistent inflammatory skin disease. The murine model with immunologic phenomena resembling human AD was introduced, which demonstrated skewedness toward predominance of type-2 helper T cell reactivity and pathophysiological changes similar as human AD following 2,4-dinitrochlorobenzene (DNCB) sensitization and challenge. Molecular mechanism on the DNCB-mediated AD was further evaluated. Skin tissues were collected from mice treated with DNCB, and each tissue was equally divided into two sections; one for protein and the other for mRNA analysis. Expression of filaggrin, an important protein for keratinocyte integrity, was evaluated through SDS-PAGE. Level of mRNA expression for cytokines was determined through semi-quantitative reverse transcriptase polymerase chain reaction. Expression of filaggrin protein was significantly enhanced in the mice treated with DNCB compared with the vehicle (acetone : olive oil = 4 : 1 mixture) treatment group or the normal group without any treatment. Level of tumor necrosis factor-alpha and interleukin-18 mRNA expression, cytokines involved in activity of type-1 helper T (T H1) cell, was significantly downregulated in the AD group compared with other control groups. These results suggest that suppression of T H1 cell-mediated immune response could be reflected into the skin tissue of mice treated with DNCB for AD induction, and disturbance of keratinocyte integrity might evoke a compensatory mechanism.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Filaggrin in the frontline: role in skin barrier function and disease.

          Recently, loss-of-function mutations in FLG, the human gene encoding profilaggrin and filaggrin, have been identified as the cause of the common skin condition ichthyosis vulgaris (which is characterised by dry, scaly skin). These mutations, which are carried by up to 10% of people, also represent a strong genetic predisposing factor for atopic eczema, asthma and allergies. Profilaggrin is the major component of the keratohyalin granules within epidermal granular cells. During epidermal terminal differentiation, the approximately 400 kDa profilaggrin polyprotein is dephosphorylated and rapidly cleaved by serine proteases to form monomeric filaggrin (37 kDa), which binds to and condenses the keratin cytoskeleton and thereby contributes to the cell compaction process that is required for squame biogenesis. Within the squames, filaggrin is citrullinated, which promotes its unfolding and further degradation into hygroscopic amino acids, which constitute one element of natural moisturising factor. Loss of profilaggrin or filaggrin leads to a poorly formed stratum corneum (ichthyosis), which is also prone to water loss (xerosis). Recent human genetic studies strongly suggest that perturbation of skin barrier function as a result of reduction or complete loss of filaggrin expression leads to enhanced percutaneous transfer of allergens. Filaggrin is therefore in the frontline of defence, and protects the body from the entry of foreign environmental substances that can otherwise trigger aberrant immune responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-gamma production.

            IL-18 is a product of macrophages and with IL-12 strikingly induces IFN-gamma production from T, B, and NK cells. Furthermore, IL-18 and 1L-12 synergize for IFN-gamma production from Th1 cells, although this combination fails to affect Th2 cells. In this study, we show that IL-12 and IL-18 promptly and synergistically induce T and B cells to develop into IFN-gamma-producing cells without engaging their Ag receptors. We also studied the mechanism underlying differences in IL-18 responsiveness between Th1 and Th2 cells. Pretreatment of T or B cells with IL-12 rendered them responsive to IL-18, which induces cell proliferation and IFN-gamma production. These IL-12-stimulated cells had both high and low affinity IL-18R and an increased IL-18R mRNA expression. In particular, IL-12-stimulated T cells strongly and continuously expressed IL-18R mRNA. However, when T cells developed into Th1 cells after stimulation with anti-CD3 and IL-12, they lowered this IL-12-induced-IL-18R mRNA expression. Then, such T cells showed a dominant response to anti-CD3 by IFN-gamma production when they were subsequently stimulated with anti-CD3 and IL-18. In contrast, Th2 cells did not express IL-18R mRNA and failed to produce IFN-gamma in response to anti-CD3 and IL-18, although they produced a substantial amount of IFN-gamma in response to anti-CD3 and IL-12. However, when Th1 and Th2 cells were stimulated with anti-CD3, IL-12, and IL-18, only the Th1 cells markedly augmented IFN-gamma production in response to IL-18, suggesting that IL-18 responsiveness between Th1 and Th2 cells resulted from their differential expression of IL-18R.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis.

              The epidermis protects human subjects from exogenous stressors and helps to maintain internal fluid and electrolyte homeostasis. Filaggrin is a crucial epidermal protein that is important for the formation of the corneocyte, as well as the generation of its intracellular metabolites, which contribute to stratum corneum hydration and pH. The levels of filaggrin and its degradation products are influenced not only by the filaggrin genotype but also by inflammation and exogenous stressors. Pertinently, filaggrin deficiency is observed in patients with atopic dermatitis regardless of filaggrin mutation status, suggesting that the absence of filaggrin is a key factor in the pathogenesis of this skin condition. In this article we review the various causes of low filaggrin levels, centralizing the functional and morphologic role of a deficiency in filaggrin, its metabolites, or both in the etiopathogenesis of atopic dermatitis.
                Bookmark

                Author and article information

                Journal
                Toxicol Res
                Toxicol Res
                Toxicological Research
                Toxicological Research
                Korean Society of Toxicology
                1976-8257
                2234-2753
                January 2018
                15 January 2018
                : 34
                : 1
                : 7-12
                Affiliations
                Department of Occupational Health, Catholic University of Daegu, Gyeongsan, Korea
                Author notes
                Correspondence to: Yong Heo, Department of Occupational Health, Catholic University of Daegu, 13-13 Hayang-ro, Hayang-eup, Gyeongsan-si, Gyeongbuk 38430, Korea, E-mail: yheo@ 123456cu.ac.kr
                Article
                tr-34-007
                10.5487/TR.2018.34.1.007
                5776911
                29371996
                4596cea5-d8df-4f91-bb3c-bf2dbbfea032
                Copyright © 2018 The Korean Society Of Toxicology

                This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 September 2017
                : 15 October 2017
                : 20 October 2017
                Categories
                Original Article

                atopic dermatitis,murine model,filaggrin,il-18,tnfα,gene expression

                Comments

                Comment on this article