Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Do Leptin Play a Role in Metabolism–Related Psychopathological Symptoms?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives: Leptin is a crucial regulator of energy balance and is associated with obesity. In recent years, it has also been recognized as involved in the psychopathological mechanism. Our study aimed to elucidate the relationships between serum leptin levels, body mass index (BMI), and psychopathology symptoms in patients with schizophrenia.

          Methods: A cross-sectional assessment of 324 inpatients with schizophrenia was conducted. Schizophrenia symptoms were measured using the Positive and Negative Syndrome Scale (PANSS) and the Brief Psychiatric Rating Scale (BPRS). Serum leptin levels were assessed by the Enzyme-Linked Immunosorbent Assay (ELISA).

          Results: Significant differences in sex, BMI, and negative symptom subscale (PANSS-N) scores were found between the groups with high and low leptin levels in the study. Leptin levels were positively correlated with BMI (B = 2.322, t = 9.557, P < 0.001) and negatively correlated with PANSS-N scores (B = −0.303, t = −2.784, P = 0.006).

          Conclusions: Our results suggest that the increase in leptin levels is responsible for antipsychotic-induced weight gain and improved psychopathological symptoms.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia

          The variable results of positive-negative research with schizophrenics underscore the importance of well-characterized, standardized measurement techniques. We report on the development and initial standardization of the Positive and Negative Syndrome Scale (PANSS) for typological and dimensional assessment. Based on two established psychiatric rating systems, the 30-item PANSS was conceived as an operationalized, drug-sensitive instrument that provides balanced representation of positive and negative symptoms and gauges their relationship to one another and to global psychopathology. It thus constitutes four scales measuring positive and negative syndromes, their differential, and general severity of illness. Study of 101 schizophrenics found the four scales to be normally distributed and supported their reliability and stability. Positive and negative scores were inversely correlated once their common association with general psychopathology was extracted, suggesting that they represent mutually exclusive constructs. Review of five studies involving the PANSS provided evidence of its criterion-related validity with antecedent, genealogical, and concurrent measures, its predictive validity, its drug sensitivity, and its utility for both typological and dimensional assessment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis.

            The question of which antipsychotic drug should be preferred for the treatment of schizophrenia is controversial, and conventional pairwise meta-analyses cannot provide a hierarchy based on the randomised evidence. We aimed to integrate the available evidence to create hierarchies of the comparative efficacy, risk of all-cause discontinuation, and major side-effects of antipsychotic drugs. We did a Bayesian-framework, multiple-treatments meta-analysis (which uses both direct and indirect comparisons) of randomised controlled trials to compare 15 antipsychotic drugs and placebo in the acute treatment of schizophrenia. We searched the Cochrane Schizophrenia Group's specialised register, Medline, Embase, the Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov for reports published up to Sept 1, 2012. Search results were supplemented by reports from the US Food and Drug Administration website and by data requested from pharmaceutical companies. Blinded, randomised controlled trials of patients with schizophrenia or related disorders were eligible. We excluded trials done in patients with predominant negative symptoms, concomitant medical illness, or treatment resistance, and those done in stable patients. Data for seven outcomes were independently extracted by two reviewers. The primary outcome was efficacy, as measured by mean overall change in symptoms. We also examined all-cause discontinuation, weight gain, extrapyramidal side-effects, prolactin increase, QTc prolongation, and sedation. We identified 212 suitable trials, with data for 43 049 participants. All drugs were significantly more effective than placebo. The standardised mean differences with 95% credible intervals were: clozapine 0·88, 0·73-1·03; amisulpride 0·66, 0·53-0·78; olanzapine 0·59, 0·53-0·65; risperidone 0·56, 0·50-0·63; paliperidone 0·50, 0·39-0·60; zotepine 0·49, 0·31-0·66; haloperidol 0·45, 0·39-0·51; quetiapine 0·44, 0·35-0·52; aripiprazole 0·43, 0·34-0·52; sertindole 0·39, 0·26-0·52; ziprasidone 0·39, 0·30-0·49; chlorpromazine 0·38, 0·23-0·54; asenapine 0·38, 0·25-0·51; lurasidone 0·33, 0·21-0·45; and iloperidone 0·33, 0·22-0·43. Odds ratios compared with placebo for all-cause discontinuation ranged from 0·43 for the best drug (amisulpride) to 0·80 for the worst drug (haloperidol); for extrapyramidal side-effects 0·30 (clozapine) to 4·76 (haloperidol); and for sedation 1·42 (amisulpride) to 8·82 (clozapine). Standardised mean differences compared with placebo for weight gain varied from -0·09 for the best drug (haloperidol) to -0·74 for the worst drug (olanzapine), for prolactin increase 0·22 (aripiprazole) to -1·30 (paliperidone), and for QTc prolongation 0·10 (lurasidone) to -0·90 (sertindole). Efficacy outcomes did not change substantially after removal of placebo or haloperidol groups, or when dose, percentage of withdrawals, extent of blinding, pharmaceutical industry sponsorship, study duration, chronicity, and year of publication were accounted for in meta-regressions and sensitivity analyses. Antipsychotics differed substantially in side-effects, and small but robust differences were seen in efficacy. Our findings challenge the straightforward classification of antipsychotics into first-generation and second-generation groupings. Rather, hierarchies in the different domains should help clinicians to adapt the choice of antipsychotic drug to the needs of individual patients. These findings should be considered by mental health policy makers and in the revision of clinical practice guidelines. None. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: a systematic review and network meta-analysis

              Summary Background Antipsychotic treatment is associated with metabolic disturbance. However, the degree to which metabolic alterations occur in treatment with different antipsychotics is unclear. Predictors of metabolic dysregulation are poorly understood and the association between metabolic change and change in psychopathology is uncertain. We aimed to compare and rank antipsychotics on the basis of their metabolic side-effects, identify physiological and demographic predictors of antipsychotic-induced metabolic dysregulation, and investigate the relationship between change in psychotic symptoms and change in metabolic parameters with antipsychotic treatment. Methods We searched MEDLINE, EMBASE, and PsycINFO from inception until June 30, 2019. We included blinded, randomised controlled trials comparing 18 antipsychotics and placebo in acute treatment of schizophrenia. We did frequentist random-effects network meta-analyses to investigate treatment-induced changes in body weight, BMI, total cholesterol, LDL cholesterol, HDL cholesterol, triglyceride, and glucose concentrations. We did meta-regressions to examine relationships between metabolic change and age, sex, ethnicity, baseline weight, and baseline metabolic parameter level. We examined the association between metabolic change and psychopathology change by estimating the correlation between symptom severity change and metabolic parameter change. Findings Of 6532 citations, we included 100 randomised controlled trials, including 25 952 patients. Median treatment duration was 6 weeks (IQR 6–8). Mean differences for weight gain compared with placebo ranged from −0·23 kg (95% CI −0·83 to 0·36) for haloperidol to 3·01 kg (1·78 to 4·24) for clozapine; for BMI from −0·25 kg/m2 (−0·68 to 0·17) for haloperidol to 1·07 kg/m2 (0·90 to 1·25) for olanzapine; for total-cholesterol from −0·09 mmol/L (−0·24 to 0·07) for cariprazine to 0·56 mmol/L (0·26–0·86) for clozapine; for LDL cholesterol from −0·13 mmol/L (−0.21 to −0·05) for cariprazine to 0·20 mmol/L (0·14 to 0·26) for olanzapine; for HDL cholesterol from 0·05 mmol/L (0·00 to 0·10) for brexpiprazole to −0·10 mmol/L (−0·33 to 0·14) for amisulpride; for triglycerides from −0·01 mmol/L (−0·10 to 0·08) for brexpiprazole to 0·98 mmol/L (0·48 to 1·49) for clozapine; for glucose from −0·29 mmol/L (−0·55 to −0·03) for lurasidone to 1·05 mmol/L (0·41 to 1·70) for clozapine. Greater increases in glucose were predicted by higher baseline weight (p=0·0015) and male sex (p=0·0082). Non-white ethnicity was associated with greater increases in total cholesterol (p=0·040) compared with white ethnicity. Improvements in symptom severity were associated with increases in weight (r=0·36, p=0·0021), BMI (r=0·84, p<0·0001), total-cholesterol (r=0·31, p=0·047), and LDL cholesterol (r=0·42, p=0·013), and decreases in HDL cholesterol (r=–0·35, p=0·035). Interpretation Marked differences exist between antipsychotics in terms of metabolic side-effects, with olanzapine and clozapine exhibiting the worst profiles and aripiprazole, brexpiprazole, cariprazine, lurasidone, and ziprasidone the most benign profiles. Increased baseline weight, male sex, and non-white ethnicity are predictors of susceptibility to antipsychotic-induced metabolic change, and improvements in psychopathology are associated with metabolic disturbance. Treatment guidelines should be updated to reflect our findings. However, the choice of antipsychotic should be made on an individual basis, considering the clinical circumstances and preferences of patients, carers, and clinicians. Funding UK Medical Research Council, Wellcome Trust, National Institute for Health Research Oxford Health Biomedical Research Centre.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychiatry
                Front Psychiatry
                Front. Psychiatry
                Frontiers in Psychiatry
                Frontiers Media S.A.
                1664-0640
                10 September 2021
                2021
                : 12
                : 710498
                Affiliations
                [1] 1Department of Psychiatry, Chaohu Hospital, Anhui Medical University , Hefei, China
                [2] 2School of Mental Health and Psychological Sciences, Anhui Medical University , Hefei, China
                [3] 3Maanshan Fourth People's Hospital , Maanshan, China
                Author notes

                Edited by: Jolanta Kucharska-Mazur, Pomeranian Medical University, Poland

                Reviewed by: Domenico De Berardis, Azienda Usl Teramo, Italy; Takefumi Suzuki, University of Yamanashi, Japan

                *Correspondence: Kai Zhang zhangkai@ 123456ahmu.edu.cn

                This article was submitted to Psychopathology, a section of the journal Frontiers in Psychiatry

                †These authors share first authorship

                Article
                10.3389/fpsyt.2021.710498
                8460901
                34566714
                45cd532a-5b63-47d5-b4c1-8ddc1a1a6b03
                Copyright © 2021 Zhang, Li, Yao, Yang, Ning, Zhao, Xia, Zhang, Zhang and Liu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 May 2021
                : 17 August 2021
                Page count
                Figures: 1, Tables: 4, Equations: 0, References: 57, Pages: 8, Words: 5701
                Funding
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Funded by: National Key Scientific Instrument and Equipment Development Projects of China, doi 10.13039/501100012149;
                Categories
                Psychiatry
                Original Research

                Clinical Psychology & Psychiatry
                leptin,body mass index,psychopathological symptoms,schizophrenia,antipsychotics

                Comments

                Comment on this article