23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Role of Hypothalamic Neuropeptides in Neurogenesis and Neuritogenesis

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The hypothalamus is a source of neural progenitor cells which give rise to different populations of specialized and differentiated cells during brain development. Newly formed neurons in the hypothalamus can synthesize and release various neuropeptides. Although term neuropeptide recently undergoes redefinition, small-size hypothalamic neuropeptides remain major signaling molecules mediating short- and long-term effects on brain development. They represent important factors in neurite growth and formation of neural circuits. There is evidence suggesting that the newly generated hypothalamic neurons may be involved in regulation of metabolism, energy balance, body weight, and social behavior as well. Here we review recent data on the role of hypothalamic neuropeptides in adult neurogenesis and neuritogenesis with special emphasis on the development of food intake and social behavior related brain circuits.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms and functional implications of adult neurogenesis.

          The generation of new neurons is sustained throughout adulthood in the mammalian brain due to the proliferation and differentiation of adult neural stem cells. In this review, we discuss the factors that regulate proliferation and fate determination of adult neural stem cells and describe recent studies concerning the integration of newborn neurons into the existing neural circuitry. We further address the potential significance of adult neurogenesis in memory, depression, and neurodegenerative disorders such as Alzheimer's and Parkinson's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication.

            As exemplified particularly with vasopressin and oxytocin, release of neuropeptides within the brain occurs from dendrites, somata, and axons of neurosecretory neurons; mechanisms include activation of intracellular Ca2+ stores, changed strength of synaptic input and altered interaction between transcription factors and gene promoters. Upon demand, both diffuse spread of neuropeptides in the extracellular fluid following dendritic release and focal release from axonal terminals may contribute to regionally and temporally varying combinations of neuromodulator and neurotransmitter actions, thus providing a theoretically unlimited variability in interneuronal signaling. Thus, instead of favoring volume or synaptic transmission following central neuropeptide release, a more dynamic concept is presented with multiple and variable modes of release and communication. This concept considers neuropeptides in the extracellular fluid of the brain rather than those in the cerebrospinal fluid or plasma as primary signals, triggering a variety of receptor-mediated effects, including those underlying behavioral and neuroendocrine regulation and psychopathology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid rewiring of arcuate nucleus feeding circuits by leptin.

              The fat-derived hormone leptin regulates energy balance in part by modulating the activity of neuropeptide Y and proopiomelanocortin neurons in the hypothalamic arcuate nucleus. To study the intrinsic activity of these neurons and their responses to leptin, we generated mice that express distinct green fluorescent proteins in these two neuronal types. Leptin-deficient (ob/ob) mice differed from wild-type mice in the numbers of excitatory and inhibitory synapses and postsynaptic currents onto neuropeptide Y and proopiomelanocortin neurons. When leptin was delivered systemically to ob/ob mice, the synaptic density rapidly normalized, an effect detectable within 6 hours, several hours before leptin's effect on food intake. These data suggest that leptin-mediated plasticity in the ob/ob hypothalamus may underlie some of the hormone's behavioral effects.
                Bookmark

                Author and article information

                Journal
                Neural Plast
                Neural Plast
                NP
                Neural Plasticity
                Hindawi Publishing Corporation
                2090-5904
                1687-5443
                2016
                13 January 2016
                : 2016
                : 3276383
                Affiliations
                1Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovakia
                2Institute of Physiology, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia
                3Department of Normal and Pathological Physiology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
                Author notes

                Academic Editor: Etienne de Villers-Sidani

                Article
                10.1155/2016/3276383
                4737468
                26881105
                45fc1728-733f-4973-9d37-528e4b0b117c
                Copyright © 2016 Jan Bakos et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 August 2015
                : 18 November 2015
                : 22 November 2015
                Categories
                Review Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article