Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of ( i) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and ( ii) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non- S. aureus spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic.

          Staphylococcus aureus is an important cause of skin and soft-tissue infections (SSTIs), endovascular infections, pneumonia, septic arthritis, endocarditis, osteomyelitis, foreign-body infections, and sepsis. Methicillin-resistant S. aureus (MRSA) isolates were once confined largely to hospitals, other health care environments, and patients frequenting these facilities. Since the mid-1990s, however, there has been an explosion in the number of MRSA infections reported in populations lacking risk factors for exposure to the health care system. This increase in the incidence of MRSA infection has been associated with the recognition of new MRSA clones known as community-associated MRSA (CA-MRSA). CA-MRSA strains differ from the older, health care-associated MRSA strains; they infect a different group of patients, they cause different clinical syndromes, they differ in antimicrobial susceptibility patterns, they spread rapidly among healthy people in the community, and they frequently cause infections in health care environments as well. This review details what is known about the epidemiology of CA-MRSA strains and the clinical spectrum of infectious syndromes associated with them that ranges from a commensal state to severe, overwhelming infection. It also addresses the therapy of these infections and strategies for their prevention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Methicillin-resistant S. aureus infections among patients in the emergency department.

            Methicillin-resistant Staphylococcus aureus (MRSA) is increasingly recognized in infections among persons in the community without established risk factors for MRSA. We enrolled adult patients with acute, purulent skin and soft-tissue infections presenting to 11 university-affiliated emergency departments during the month of August 2004. Cultures were obtained, and clinical information was collected. Available S. aureus isolates were characterized by antimicrobial-susceptibility testing, pulsed-field gel electrophoresis, and detection of toxin genes. On MRSA isolates, we performed typing of the staphylococcal cassette chromosome mec (SCCmec), the genetic element that carries the mecA gene encoding methicillin resistance. S. aureus was isolated from 320 of 422 patients with skin and soft-tissue infections (76 percent). The prevalence of MRSA was 59 percent overall and ranged from 15 to 74 percent. Pulsed-field type USA300 isolates accounted for 97 percent of MRSA isolates; 74 percent of these were a single strain (USA300-0114). SCCmec type IV and the Panton-Valentine leukocidin toxin gene were detected in 98 percent of MRSA isolates. Other toxin genes were detected rarely. Among the MRSA isolates, 95 percent were susceptible to clindamycin, 6 percent to erythromycin, 60 percent to fluoroquinolones, 100 percent to rifampin and trimethoprim-sulfamethoxazole, and 92 percent to tetracycline. Antibiotic therapy was not concordant with the results of susceptibility testing in 100 of 175 patients with MRSA infection who received antibiotics (57 percent). Among methicillin-susceptible S. aureus isolates, 31 percent were USA300 and 42 percent contained pvl genes. MRSA is the most common identifiable cause of skin and soft-tissue infections among patients presenting to emergency departments in 11 U.S. cities. When antimicrobial therapy is indicated for the treatment of skin and soft-tissue infections, clinicians should consider obtaining cultures and modifying empirical therapy to provide MRSA coverage. Copyright 2006 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Genetic Resource for Rapid and Comprehensive Phenotype Screening of Nonessential Staphylococcus aureus Genes

              ABSTRACT To enhance the research capabilities of investigators interested in Staphylococcus aureus, the Nebraska Center for Staphylococcal Research (CSR) has generated a sequence-defined transposon mutant library consisting of 1,952 strains, each containing a single mutation within a nonessential gene of the epidemic community-associated methicillin-resistant S. aureus (CA-MRSA) isolate USA300. To demonstrate the utility of this library for large-scale screening of phenotypic alterations, we spotted the library on indicator plates to assess hemolytic potential, protease production, pigmentation, and mannitol utilization. As expected, we identified many genes known to function in these processes, thus validating the utility of this approach. Importantly, we also identified genes not previously associated with these phenotypes. In total, 71 mutants displayed differential hemolysis activities, the majority of which were not previously known to influence hemolysin production. Furthermore, 62 mutants were defective in protease activity, with only 14 previously demonstrated to be involved in the production of extracellular proteases. In addition, 38 mutations affected pigment formation, while only 7 influenced mannitol fermentation, underscoring the sensitivity of this approach to identify rare phenotypes. Finally, 579 open reading frames were not interrupted by a transposon, thus providing potentially new essential gene targets for subsequent antibacterial discovery. Overall, the Nebraska Transposon Mutant Library represents a valuable new resource for the research community that should greatly enhance investigations of this important human pathogen.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                January 11 2019
                : 201814265
                Article
                10.1073/pnas.1814265116
                6358666
                30635416
                469aeaee-5782-4eb6-a99f-cf8cbe90a900
                © 2019

                Free to read

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article

                scite_

                Similar content107

                Cited by30

                Most referenced authors1,780