1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Different Aspects of Physical Load in Small-Sided Field Hockey Games

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wilmes, E, de Ruiter, CJ, van Leeuwen, RR, Banning, LF, van der Laan, D, and Savelsbergh, GJP. Different aspects of physical load in small-sided field hockey games. J Strength Cond Res 38(2): e56–e61, 2024—Running volumes and acceleration/deceleration load are known to vary with different formats of small-sided games (SSGs) in field hockey. However, little is known about other aspects of the physical load. Therefore, the aim of this study was to gain a more thorough understanding of the total physical load in field hockey SSGs. To that end, 2 different SSGs (small: 5 vs. 5, ∼100 m 2 per player; large: 9 vs. 9, ∼200 m 2 per player) were performed by 16 female elite field hockey athletes. A range of external physical load metrics was obtained using a global navigational satellite system and 3 wearable inertial measurement units on the thighs and pelvis. These metrics included distances covered in different velocity ranges (walk, jog, run, and sprint), mean absolute acceleration/deceleration, Hip Load, and time spent in several physically demanding body postures. The effects of SSG format on these external physical load metrics were assessed using linear mixed models ( p < 0.05). Running volumes in various speed ranges were higher for the large SSG. By contrast, mean absolute acceleration/deceleration and time spent in several demanding body postures were higher for the small SSG. This study shows that changing the SSG format affects different aspects of physical load differently.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Physiology of small-sided games training in football: a systematic review.

          Small-sided games (SSGs) are played on reduced pitch areas, often using modified rules and involving a smaller number of players than traditional football. These games are less structured than traditional fitness training methods but are very popular training drills for players of all ages and levels. At present, there is relatively little information regarding how SSGs can best be used to improve physical capacities and technical or tactical skills in footballers. However, many prescriptive variables controlled by the coach can influence the exercise intensity during SSGs. Coaches usually attempt to change the training stimulus in SSGs through altering the pitch area, player number, coach encouragement, training regimen (continuous vs interval training), rules and the use of goalkeepers. In general, it appears that SSG exercise intensity is increased with the concurrent reduction in player number and increase in relative pitch area per player. However, the inverse relationship between the number of players in each SSG and exercise intensity does not apply to the time-motion characteristics. Consistent coach encouragement can also increase training intensity, but most rule changes do not appear to strongly affect exercise intensity. The variation of exercise intensity measures are lower in smaller game formats (e.g. three vs three) and have acceptable reproducibility when the same game is repeated between different training sessions or within the same session. The variation in exercise intensity during SSGs can also be improved with consistent coach encouragement but it is still more variable than traditional generic training methods. Other studies have also shown that SSGs containing fewer players can exceed match intensity and elicit similar intensities to both long- and short-duration high-intensity interval running. It also appears that fitness and football-specific performance can be improved equally with SSG and generic training drills. Future research is required to examine the optimal periodization strategies of SSGs training for the long-term development of physiological capacity, technical skill and tactical proficiency. © 2011 Adis Data Information BV. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Internal and External Training Load: 15 Years On

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estimation of IMU and MARG orientation using a gradient descent algorithm.

              This paper presents a novel orientation algorithm designed to support a computationally efficient, wearable inertial human motion tracking system for rehabilitation applications. It is applicable to inertial measurement units (IMUs) consisting of tri-axis gyroscopes and accelerometers, and magnetic angular rate and gravity (MARG) sensor arrays that also include tri-axis magnetometers. The MARG implementation incorporates magnetic distortion compensation. The algorithm uses a quaternion representation, allowing accelerometer and magnetometer data to be used in an analytically derived and optimised gradient descent algorithm to compute the direction of the gyroscope measurement error as a quaternion derivative. Performance has been evaluated empirically using a commercially available orientation sensor and reference measurements of orientation obtained using an optical measurement system. Performance was also benchmarked against the propriety Kalman-based algorithm of orientation sensor. Results indicate the algorithm achieves levels of accuracy matching that of the Kalman based algorithm; < 0.8° static RMS error, < 1.7° dynamic RMS error. The implications of the low computational load and ability to operate at small sampling rates significantly reduces the hardware and power necessary for wearable inertial movement tracking, enabling the creation of lightweight, inexpensive systems capable of functioning for extended periods of time. © 2011 IEEE
                Bookmark

                Author and article information

                Contributors
                Journal
                J Strength Cond Res
                J Strength Cond Res
                jscr
                Journal of Strength and Conditioning Research
                Journal of Strength and Conditioning Research
                1064-8011
                1533-4287
                February 2024
                16 October 2023
                : 38
                : 2
                : e56-e61
                Affiliations
                [1 ]Amsterdam Movement Sciences, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; and
                [2 ]Royal Dutch Hockey Association, Utrecht, the Netherlands
                Author notes
                Address correspondence to Erik Wilmes, e.wilmes@ 123456vu.nl .
                Article
                JSCR-08-19505 00028
                10.1519/JSC.0000000000004627
                10798585
                37844190
                46a62d4c-b98a-4d00-ba1f-5ab863920a76
                Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the National Strength and Conditioning Association.

                This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

                History
                Categories
                Original Research
                Custom metadata
                TRUE

                training load,lower-body kinematics,team sports,inertial measurement units,global navigational satellite system

                Comments

                Comment on this article