47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biodiversity and biogeography of the atmosphere

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The variation of life has predominantly been studied on land and in water, but this focus is changing. There is a resurging interest in the distribution of life in the atmosphere and the processes that underlie patterns in this distribution. Here, we review our current state of knowledge about the biodiversity and biogeography of the atmosphere, with an emphasis on micro-organisms, the numerically dominant forms of aerial life. We present evidence to suggest that the atmosphere is a habitat for micro-organisms, and not purely a conduit for terrestrial and aquatic life. Building on a rich history of research in terrestrial and aquatic systems, we explore biodiversity patterns that are likely to play an important role in the emerging field of air biogeography. We discuss the possibility of a more unified understanding of the biosphere, one that links knowledge about biodiversity and biogeography in the lithosphere, hydrosphere and atmosphere.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial biogeography: putting microorganisms on the map.

          We review the biogeography of microorganisms in light of the biogeography of macroorganisms. A large body of research supports the idea that free-living microbial taxa exhibit biogeographic patterns. Current evidence confirms that, as proposed by the Baas-Becking hypothesis, 'the environment selects' and is, in part, responsible for spatial variation in microbial diversity. However, recent studies also dispute the idea that 'everything is everywhere'. We also consider how the processes that generate and maintain biogeographic patterns in macroorganisms could operate in the microbial world.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography.

            A latitudinal gradient in biodiversity has existed since before the time of the dinosaurs, yet how and why this gradient arose remains unresolved. Here we review two major hypotheses for the origin of the latitudinal diversity gradient. The time and area hypothesis holds that tropical climates are older and historically larger, allowing more opportunity for diversification. This hypothesis is supported by observations that temperate taxa are often younger than, and nested within, tropical taxa, and that diversity is positively correlated with the age and area of geographical regions. The diversification rate hypothesis holds that tropical regions diversify faster due to higher rates of speciation (caused by increased opportunities for the evolution of reproductive isolation, or faster molecular evolution, or the increased importance of biotic interactions), or due to lower extinction rates. There is phylogenetic evidence for higher rates of diversification in tropical clades, and palaeontological data demonstrate higher rates of origination for tropical taxa, but mixed evidence for latitudinal differences in extinction rates. Studies of latitudinal variation in incipient speciation also suggest faster speciation in the tropics. Distinguishing the roles of history, speciation and extinction in the origin of the latitudinal gradient represents a major challenge to future research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Life in extreme environments.

              Each recent report of liquid water existing elsewhere in the Solar System has reverberated through the international press and excited the imagination of humankind. Why? Because in the past few decades we have come to realize that where there is liquid water on Earth, virtually no matter what the physical conditions, there is life. What we previously thought of as insurmountable physical and chemical barriers to life, we now see as yet another niche harbouring 'extremophiles'. This realization, coupled with new data on the survival of microbes in the space environment and modelling of the potential for transfer of life between celestial bodies, suggests that life could be more common than previously thought. Here we examine critically what it means to be an extremophile, and the implications of this for evolution, biotechnology and especially the search for life in the Universe.
                Bookmark

                Author and article information

                Journal
                Philos Trans R Soc Lond B Biol Sci
                RSTB
                royptb
                Philosophical Transactions of the Royal Society B: Biological Sciences
                The Royal Society
                0962-8436
                1471-2970
                27 November 2010
                27 November 2010
                : 365
                : 1558 , Discussion Meeting issue 'Biological diversity in a changing world' organized and edited by Anne Magurran and Maria Dornelas
                : 3645-3653
                Affiliations
                Center for Ecology and Evolutionary Biology, 335 Pacific Hall, 5289 University of Oregon, Eugene, OR 97403-5289, USA
                Author notes
                [* ]Author for correspondence ( jlgreen@ 123456uoregon.edu ).
                Article
                rstb20100283
                10.1098/rstb.2010.0283
                2982008
                20980313
                46c012d2-bc88-4ea4-882f-762205b1bfda
                © 2010 The Royal Society

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                1001
                60
                Articles

                Philosophy of science
                air,biodiversity,micro-organism,biogeography,atmosphere
                Philosophy of science
                air, biodiversity, micro-organism, biogeography, atmosphere

                Comments

                Comment on this article