12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA Let-7f-5p Promotes Bone Marrow Mesenchymal Stem Cells Survival by Targeting Caspase-3 in Alzheimer Disease Model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Widespread death of transplanted mesenchymal stem cells (MSCs) hampers the development of stem cell therapy for Alzheimer disease (AD). Cell pre-conditioning might help cope with this challenge. We tested whether let-7f-5p-modified MSCs could prolong the survival of MSCs after transplantation. When exposed to Aβ 25−35 in vitro, MSCs showed significant early apoptosis with decrease in the let-7f-5p levels and increased caspase-3 expression. Upregulating microRNA let-7f-5p in MSCs alleviated Aβ 25−35-induced apoptosis by decreasing the caspase-3 levels. After computerized analysis and the luciferase reporter assay, we identified that caspases-3 was the target gene of let-7f-5p. In vivo, hematoxylin and eosin staining confirmed the success of MSCs transplantation into the lateral ventricles, and the let-7f-5p upregulation group showed the lowest apoptotic rate of MSCs detected by TUNEL immunohistochemistry analysis and immunofluorescence. Similarly, bioluminescent imaging showed that let-7f-5p upregulation moderately prolonged the retention of MSCs in brain. In summary, we identified the anti-apoptotic role of let-7f-5p in Aβ 25−35-induced cytotoxicity, as well as the protective effect of let-7f-5p on survival of grafted MSCs by targeting caspase-3 in AD models. These findings show a promising approach of microRNA-modified MSCs transplantation as a therapy for neurodegenerative diseases.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy?

          Mesenchymal stromal cells (MSCs) are currently being investigated for use in a wide variety of clinical applications. For most of these applications, systemic delivery of the cells is preferred. However, this requires the homing and migration of MSCs to a target tissue. Although MSC homing has been described, this process does not appear to be highly efficacious because only a few cells reach the target tissue and remain there after systemic administration. This has been ascribed to low expression levels of homing molecules, the loss of expression of such molecules during expansion, and the heterogeneity of MSCs in cultures and MSC culture protocols. To overcome these limitations, different methods to improve the homing capacity of MSCs have been examined. Here, we review the current understanding of MSC homing, with a particular focus on homing to bone marrow. In addition, we summarize the strategies that have been developed to improve this process. A better understanding of MSC biology, MSC migration and homing mechanisms will allow us to prepare MSCs with optimal homing capacities. The efficacy of therapeutic applications is dependent on efficient delivery of the cells and can, therefore, only benefit from better insights into the homing mechanisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The LIN28/let-7 Pathway in Cancer

            Among all tumor suppressor microRNAs, reduced let-7 expression occurs most frequently in cancer and typically correlates with poor prognosis. Activation of either LIN28A or LIN28B, two highly related RNA binding proteins (RBPs) and proto-oncogenes, is responsible for the global post-transcriptional downregulation of the let-7 microRNA family observed in many cancers. Specifically, LIN28A binds the terminal loop of precursor let-7 and recruits the Terminal Uridylyl Transferase (TUTase) ZCCHC11 that polyuridylates pre-let-7, thereby blocking microRNA biogenesis and tumor suppressor function. For LIN28B, the precise mechanism responsible for let-7 inhibition remains controversial. Functionally, the decrease in let-7 microRNAs leads to overexpression of their oncogenic targets such as MYC, RAS, HMGA2, BLIMP1, among others. Furthermore, mouse models demonstrate that ectopic LIN28 expression is sufficient to drive and/or accelerate tumorigenesis via a let-7 dependent mechanism. In this review, the LIN28/let-7 pathway is discussed, emphasizing its role in tumorigenesis, cancer stem cell biology, metabolomics, metastasis, and resistance to ionizing radiation and several chemotherapies. Also, emerging evidence will be presented suggesting that molecular targeting of this pathway may provide therapeutic benefit in cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Safety and Clinical Effects of Mesenchymal Stem Cells Secreting Neurotrophic Factor Transplantation in Patients With Amyotrophic Lateral Sclerosis: Results of Phase 1/2 and 2a Clinical Trials.

              Preclinical studies have shown that neurotrophic growth factors (NTFs) extend the survival of motor neurons in amyotrophic lateral sclerosis (ALS) and that the combined delivery of these neurotrophic factors has a strong synergistic effect. We have developed a culture-based method for inducing mesenchymal stem cells (MSCs) to secrete neurotrophic factors. These MSC-NTF cells have been shown to be protective in several animal models of neurodegenerative diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                22 May 2018
                2018
                : 12
                : 333
                Affiliations
                [1] 1Department of Neurology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
                [2] 2Department of Radiology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
                [3] 3Department of Children Rehabilitation, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou, China
                Author notes

                Edited by: Dmitry Lim, Università degli Studi del Piemonte Orientale, Italy

                Reviewed by: Darius Widera, University of Reading, United Kingdom; Ana Gabriela S. C. Henriques, University of Aveiro, Portugal

                *Correspondence: Yanjie Jia jiayanjie1971@ 123456zzu.edu.cn

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                †These authors have contributed equally to this work.

                Article
                10.3389/fnins.2018.00333
                5972183
                29872375
                46d563c5-4745-43ba-8e41-fb7a47d30331
                Copyright © 2018 Han, Zhou, Zhang, Wu, Lu, Li, Duan, Yao, Zhu and Jia.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 January 2018
                : 30 April 2018
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 48, Pages: 12, Words: 7068
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81371385
                Award ID: U1604170
                Categories
                Neuroscience
                Original Research

                Neurosciences
                alzheimer disease,cell transplantation,let-7f,bone marrow mesenchymal stem cells,cell apoptosis

                Comments

                Comment on this article