28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Detection of bla TEM , bla CTX-M , bla CMY , and bla SHV Genes Among Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolated from Migratory Birds Travelling to Bangladesh

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli cause severe health hazards. Migratory birds are reservoirs and transmitters of many pathogens including ESBL-producing E. coli. To examine migratory birds as potential carriers of ESBL-producing E. coli and E. coli-carrying antibiotic resistance genes, 55 PCR-positive E. coli isolates were screened using the disk diffusion method, double-disk synergy test, and further polymerase chain reaction (PCR) tests. Genes encoding resistance to tetracycline [ tetA, 100% (35/35); tetB, 31.43% (11/35)], fluoroquinolone [ qnrA, 35.71% (10/28); qnrB, 25% (7/28)], and streptomycin [ aadA1, 90.24% (37/41)] were detected in the isolated E. coli. Of the 55 E. coli isolates, 21 (38.18%) were ESBL producers, and all of them were multidrug resistant. All the ESBL-producing E. coli isolates harbored at least two or more beta-lactamase genes, of which bla TEM , bla CMY , bla CTX-M , and bla SHV were detected in 95.24%, 90.48%, 85.71%, and 42.86% of isolates, respectively. All the beta-lactamase genes were present in four of the ESBL-producing E. coli isolates. Furthermore, 95.24% of ESBL-producing E. coli isolates were positive for one or more antibiotic resistance genes. To the best of our knowledge, this is the first study to detect E. coli-carrying antibiotic resistance genes including beta-lactamase bla CMY and bla SHV originating from migratory birds in Bangladesh. These results suggest that migratory birds are potential carriers of ESBL-producing E. coli along with other clinically important antibiotic resistance genes which may have detrimental impacts on human health.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Antibiotic susceptibility testing by a standardized single disk method.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extended-Spectrum β-Lactamases: a Clinical Update

            Extended-spectrum β-lactamases (ESBLs) are a rapidly evolving group of β-lactamases which share the ability to hydrolyze third-generation cephalosporins and aztreonam yet are inhibited by clavulanic acid. Typically, they derive from genes for TEM-1, TEM-2, or SHV-1 by mutations that alter the amino acid configuration around the active site of these β-lactamases. This extends the spectrum of β-lactam antibiotics susceptible to hydrolysis by these enzymes. An increasing number of ESBLs not of TEM or SHV lineage have recently been described. The presence of ESBLs carries tremendous clinical significance. The ESBLs are frequently plasmid encoded. Plasmids responsible for ESBL production frequently carry genes encoding resistance to other drug classes (for example, aminoglycosides). Therefore, antibiotic options in the treatment of ESBL-producing organisms are extremely limited. Carbapenems are the treatment of choice for serious infections due to ESBL-producing organisms, yet carbapenem-resistant isolates have recently been reported. ESBL-producing organisms may appear susceptible to some extended-spectrum cephalosporins. However, treatment with such antibiotics has been associated with high failure rates. There is substantial debate as to the optimal method to prevent this occurrence. It has been proposed that cephalosporin breakpoints for the Enterobacteriaceae should be altered so that the need for ESBL detection would be obviated. At present, however, organizations such as the Clinical and Laboratory Standards Institute (formerly the National Committee for Clinical Laboratory Standards) provide guidelines for the detection of ESBLs in klebsiellae and Escherichia coli . In common to all ESBL detection methods is the general principle that the activity of extended-spectrum cephalosporins against ESBL-producing organisms will be enhanced by the presence of clavulanic acid. ESBLs represent an impressive example of the ability of gram-negative bacteria to develop new antibiotic resistance mechanisms in the face of the introduction of new antimicrobial agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern.

              The medical community relies on clinical expertise and published guidelines to assist physicians with choices in empirical therapy for system-based infectious syndromes, such as community-acquired pneumonia and urinary-tract infections (UTIs). From the late 1990s, multidrug-resistant Enterobacteriaceae (mostly Escherichia coli) that produce extended-spectrum beta lactamases (ESBLs), such as the CTX-M enzymes, have emerged within the community setting as an important cause of UTIs. Recent reports have also described ESBL-producing E coli as a cause of bloodstream infections associated with these community-onset UTIs. The carbapenems are widely regarded as the drugs of choice for the treatment of severe infections caused by ESBL-producing Enterobacteriaceae, although comparative clinical trials are scarce. Thus, more rapid diagnostic testing of ESBL-producing bacteria and the possible modification of guidelines for community-onset bacteraemia associated with UTIs are required.
                Bookmark

                Author and article information

                Contributors
                tanvirahman@bau.edu.bd
                Journal
                Microb Ecol
                Microb Ecol
                Microbial Ecology
                Springer US (New York )
                0095-3628
                1432-184X
                27 July 2021
                : 1-9
                Affiliations
                GRID grid.411511.1, ISNI 0000 0001 2179 3896, Department of Microbiology and Hygiene, Faculty of Veterinary Science, , Bangladesh Agricultural University, ; Mymensingh, 2202 Bangladesh
                Article
                1803
                10.1007/s00248-021-01803-x
                8313370
                34312710
                46ff1547-fad5-4778-acd7-c812f317cfa1
                © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 25 April 2021
                : 18 June 2021
                Funding
                Funded by: Bangladesh Agricultural University Research System
                Award ID: 2019/8/BAU
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100001501, University Grants Commission;
                Award ID: 2020/28/UGC
                Award Recipient :
                Categories
                Environmental Microbiology

                Microbiology & Virology
                migratory birds,antibiotic resistance genes,esbl,blacmy,blashv,public health
                Microbiology & Virology
                migratory birds, antibiotic resistance genes, esbl, blacmy, blashv, public health

                Comments

                Comment on this article