8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tonicity-responsive enhancer binding protein, a Rel-like protein that stimulates transcription in response to hypertonicity

      , , , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Transcription factors of the NFAT family: regulation and function.

          As targets for the immunosuppressive drugs cyclosporin A and FK506, transcription factors of the NFAT (nuclear factor of activated T cells) family have been the focus of much attention. NFAT proteins, which are expressed in most immune-system cells, play a pivotal role in the transcription of cytokine genes and other genes critical for the immune response. The activity of NFAT proteins is tightly regulated by the calcium/calmodulin-dependent phosphatase calcineurin, a primary target for inhibition by cyclosporin A and FK506. Calcineurin controls the translocation of NFAT proteins from the cytoplasm to the nucleus of activated cells by interacting with an N-terminal regulatory domain conserved in the NFAT family. The DNA-binding domains of NFAT proteins resemble those of Rel-family proteins, and Rel and NFAT proteins show some overlap in their ability to bind to certain regulatory elements in cytokine genes. NFAT is also notable for its ability to bind cooperatively with transcription factors of the AP-1 (Fos/Jun) family to composite NFAT:AP-1 sites, found in the regulatory regions of many genes that are inducibly transcribed by immune-system cells. This review discusses recent data on the diversity of the NFAT family of transcription factors, the regulation of NFAT proteins within cells, and the cooperation of NFAT proteins with other transcription factors to regulate the expression of inducible genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Living with water stress: evolution of osmolyte systems

            Striking convergent evolution is found in the properties of the organic osmotic solute (osmolyte) systems observed in bacteria, plants, and animals. Polyhydric alcohols, free amino acids and their derivatives, and combinations of urea and methylamines are the three types of osmolyte systems found in all water-stressed organisms except the halobacteria. The selective advantages of the organic osmolyte systems are, first, a compatibility with macromolecular structure and function at high or variable (or both) osmolyte concentrations, and, second, greatly reduced needs for modifying proteins to function in concentrated intracellular solutions. Osmolyte compatibility is proposed to result from the absence of osmolyte interactions with substrates and cofactors, and the nonperturbing or favorable effects of osmolytes on macromolecular-solvent interactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways.

              Mitogen-activated protein (MAP) kinases are proline-directed serine/threonine kinases that are activated by dual phosphorylation on threonine and tyrosine residues in response to a wide array of extracellular stimuli. Three distinct groups of MAP kinases have been identified in mammalian cells [extracellular-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38]. These MAP kinases are mediators of signal transduction from the cell surface to the nucleus. One nuclear target of these MAP kinase signaling pathways is the transcription factor AP-1. MAP kinases regulate AP-1 transcriptional activity by multiple mechanisms. Here we review recent progress towards understanding AP-1 regulation by the ERK, JNK, and p38 MAP kinase signal transduction pathways.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                March 02 1999
                March 02 1999
                : 96
                : 5
                : 2538-2542
                Article
                10.1073/pnas.96.5.2538
                10051678
                4762f0ec-48f9-4af8-8287-6b8f5be2dca2
                © 1999
                History

                Comments

                Comment on this article