47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Commentary: Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: a group and individual perspective

      article-commentary

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Brain Derived Neurotrophic Factor (BDNF) is a neurotrophic protein that is strongly expressed in the Central Nervous System (CNS) and supports neuronal growth and survival (Conner et al., 1997). BDNF activates two neurotrophin receptors: Tropomyosin receptor kinase B (TrkB), that is necessary for hippocampal long-term potentiation (LTP) and associative learning, and Low-Affinity Nerve Growth Factor Receptor (P75NTR), that is required for hippocampal long-term depression (LTD; Patterson et al., 1996; Gruart et al., 2007; Chapleau and Pozzo-Miller, 2012). Val66Met is a common single nucleotide polymorphism (SNP) placed in the human BDNF gene that leads to an amino-acid substitution of valine to methionine at codon 66 and cause a 18–30% decrease of BDNF neurotrophin secretion (Egan et al., 2003; Chen et al., 2006). In Met-carriers, the reduction of BDNF secretion results in variation of cortical morphology (Pezawas et al., 2004). This affects performance of memory and learning tasks (Egan et al., 2003; Hariri et al., 2003) and it may cause neuropsychological disorders (Lu et al., 2013; Moreira et al., 2015; van der Kolk et al., 2015). On this vein, it has been shown that Val66Met polymorphism play a complex role both for plasticity changes and recovery processes in after-stroke patients (Di Lazzaro et al., 2015; Di Pino et al., 2015). The Val66Met polymorphism also alters sensorimotor system processes. McHughen et al. (2010) showed that during a simple right index finger movement task, Val/Met carriers exhibited reduced activation volumes on different brain regions (including motor cortex, premotor cortex, supplementary motor area) with respect to Val/Val carriers. Interestingly, after training, Val/Val showed a greater activation volume expansion whereas Val/Met carriers a greater activation volume reduction. Moreover, inside a driving-based motor learning task, subjects with polymorphism benefitted less from training. All together, these findings highlight that differences in volume activation, accordingly to the polymorphism, increase with presence of training. Recently, it has been shown that Transcranial Direct Current Stimulation (tDCS), might be an optimal tool to investigate the role of BDNF polymorphism in activity-dependent plasticity (Fritsch et al., 2010). In the human motor system, tDCS induces long-lasting and polarity-specific changes in the excitability of the motor cortex (Nitsche and Paulus, 2000). Anodal tDCS induces facilitatory effect by a membrane depolarization and by an increase in the excitability of corticospinal axons (Di Lazzaro et al., 2013), while cathodal tDCS induces inhibitory effects by a membrane hyperpolarization (Wagner et al., 2007). Animal models showed that tDCS modify thalamocortical synapses at presynaptic sites by changes in the membrane potential of cortical neurons (Márquez-Ruiz et al., 2012). As discussed above, BDNF protein partly modulates LTP and LTD; interestingly it also modulates the effect of tDCS in both humans and animals. In mice, Fritsch and collaborators (Fritsch et al., 2010) showed that anodal tDCS coupled with repetitive low-frequency synaptic activation (LFS) induced a long-lasting synaptic potentiation (DCS-LTP). BDNF was a key modulator of this process: its secretion was enhanced by coupled tDCS-LFS and tDCS did not induce LTP in the absence of BDNF secretion (BDNF and TrkB mutant mice). At the same time, anodal tDCS over the primary motor cortex (M1) induced minor effects on the group with a reduced BDNF expression (Val/Met carriers) during a pinch-force task. Taken together, these results showed that tDCS might improve motor skills by inducing synaptic plasticity, which requires BDNF secretion in both humans and mice (Fritsch et al., 2010). In a recent paper in Frontiers in Aging Neuroscience, Puri and collaborators (Puri et al., 2015), addressed the question about BDNF influence on tDCS effects in aging. They applied anodal tDCS for 10 and 20 min by stimulating left M1 on Val/Val and Val/Met subjects at rest. By using single pulse TMS, corticospinal excitability was measured before and each 5 min after tDCS offset. Results showed group- and time-dependent effects: Met carriers showed higher increase of M1 cortical excitability compared to Val/Val carriers. This effect was present only after 20 min of stimulation. Despite a previous tDCS study highlighted brain stimulation effects to be more pronounced on a Val/Met group (Antal et al., 2010), here authors showed the first evidence of the Val66Met SNP influence on M1 cortical excitability when tDCS was delivered at rest, as reflected by a significant between-groups interaction. These findings may be controversial: based on the previous literature, tDCS effects at rest did not differ between Val/Val and Val/Met carriers (Cheeran et al., 2008; Di Lazzaro et al., 2012; Fujiyama et al., 2014). Instead, influence of Val66Met polymorphism becomes more pronounced during task performance (Fritsch et al., 2010; McHughen et al., 2010). This might be due to the activity-dependence of BDNF secretion (Egan et al., 2003). The study by Puri et al. (2015) is also the first one that pointed out the crucial role of interaction between Val66Met SNP and duration of tDCS-M1 at rest: differences in cortical excitability occurred after 20 min of stimulation, but not after 10 min. However, these results do not fit with previous studies which showed no differences by tDCS at rest, when stimulation was applied for 10, 20, and 30 min (Cheeran et al., 2008; Di Lazzaro et al., 2012; Fujiyama et al., 2014). Results by Puri et al. (2015), may have different interpretations. One possibility is that the two groups were unbalanced in terms of number of subjects: the sample size of Val/Val carriers was three times higher than Val/Met carriers. On one hand, this allowed authors to be blinded to the genotype during the experiment. On the other hand, since tDCS affected only the smaller group (Met-carriers), unbalanced analysis might have affected statistical sensitivity (Hector et al., 2010). Another possibility is that BDNF protein could have affected differently motor control processes in elder population, as was shown that its influence on memory functions changes during the lifespan (Kennedy et al., 2015; Papenberg et al., 2015). In summary the study by Puri and collaborators showed an interesting effect of Val66Met SNP in aging. Results were also stable as shown by less inter-individual variability inside the Met group which showed a more robust tDCS after-effect. The fact that 77% of Met carriers but only 35% of Val carriers showed the expected facilitation in both sessions could be used to stratify sample selection in aging studies where more homogeneous responses to Non Invasive Brain Stimulation are required. Finally, a further study with larger and balanced group of participants is needed. It will be interesting to have a control group of younger adults to understand the role of aging in the BDNF influence on motor plasticity at rest. Conflict of interest statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.

          In this paper we demonstrate in the intact human the possibility of a non-invasive modulation of motor cortex excitability by the application of weak direct current through the scalp. Excitability changes of up to 40 %, revealed by transcranial magnetic stimulation, were accomplished and lasted for several minutes after the end of current stimulation. Excitation could be achieved selectively by anodal stimulation, and inhibition by cathodal stimulation. By varying the current intensity and duration, the strength and duration of the after-effects could be controlled. The effects were probably induced by modification of membrane polarisation. Functional alterations related to post-tetanic potentiation, short-term potentiation and processes similar to postexcitatory central inhibition are the likely candidates for the excitability changes after the end of stimulation. Transcranial electrical stimulation using weak current may thus be a promising tool to modulate cerebral excitability in a non-invasive, painless, reversible, selective and focal way.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Noninvasive human brain stimulation.

            Noninvasive brain stimulation with transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) is valuable in research and has potential therapeutic applications in cognitive neuroscience, neurophysiology, psychiatry, and neurology. TMS allows neurostimulation and neuromodulation, while tDCS is a purely neuromodulatory application. TMS and tDCS allow diagnostic and interventional neurophysiology applications, and focal neuropharmacology delivery. However, the physics and basic mechanisms of action remain incompletely explored. Following an overview of the history and current applications of noninvasive brain stimulation, we review stimulation device design principles, the electromagnetic and physical foundations of the techniques, and the current knowledge about the electrophysiologic basis of the effects. Finally, we discuss potential biomedical and electrical engineering developments that could lead to more effective stimulation devices, better suited for the specific applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS.

              The brain-derived neurotrophic factor gene (BDNF) is one of many genes thought to influence synaptic plasticity in the adult brain and shows a common single nucleotide polymorphism (BDNF Val66Met) in the normal population that is associated with differences in hippocampal volume and episodic memory. It is also thought to influence possible synaptic changes in motor cortex following a simple motor learning task. Here we extend these studies by using new non-invasive transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) techniques that directly test the excitability and plasticity of neuronal circuits in human motor cortex in subjects at rest. We investigated whether the susceptibility to TMS probes of plasticity is significantly influenced by the BDNF polymorphism. Val66Met carriers were matched with Val66Val individuals and tested on the following protocols: continuous and intermittent theta burst TMS; median nerve paired associative stimulation; and homeostatic plasticity in the TDCS/1 Hz rTMS model. The response of Met allele carriers differed significantly in all protocols compared with the response of Val66Val individuals. We suggest that this is due to the effect of BNDF on the susceptibility of synapses to undergo LTP/LTD. The circuits tested here are implicated in the pathophysiology of movement disorders such as dystonia and are being assessed as potential new targets in the treatment of stroke. Thus the polymorphism may be one factor that influences the natural response of the brain to injury and disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Aging Neurosci
                Front Aging Neurosci
                Front. Aging Neurosci.
                Frontiers in Aging Neuroscience
                Frontiers Media S.A.
                1663-4365
                23 September 2015
                2015
                : 7
                : 183
                Affiliations
                [1] 1School of Psychology, Centre for Cognition and Decision Making, National Research University Higher School of Economics Moscow, Russia
                [2] 2Department of Psychiatry and Clinical Psychobiology, University of Barcelona Barcelona, Spain
                [3] 3Unit of Neurology and Clinical Neurophysiology, Brain Investigation and Neuromodulation laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria of Siena Siena, Italy
                Author notes

                Edited by: Junfeng Sun, Shanghai Jiao Tong University, China

                Reviewed by: José M. Delgado-García, University Pablo de Olavide, Spain; Vincenzo Di Lazzaro, Università Campus Biomedico di Roma, Italy

                *Correspondence: Matteo Feurra, mfeurra@ 123456hse.ru
                Article
                10.3389/fnagi.2015.00183
                4585066
                26441642
                477621c9-05cf-4d0d-a184-e93df431e44b
                Copyright © 2015 Shpektor, Bartrés-Faz and Feurra.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 August 2015
                : 07 September 2015
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 27, Pages: 3, Words: 2376
                Categories
                Neuroscience
                General Commentary

                Neurosciences
                bdnf,tdcs,synaptic plasticity,primary motor cortex,aging
                Neurosciences
                bdnf, tdcs, synaptic plasticity, primary motor cortex, aging

                Comments

                Comment on this article