0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Letting leaders spontaneously emerge yields better creative outcomes and higher leader–follower interbrain synchrony during creative group communication

      , , ,
      Cerebral Cortex
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study aimed to investigate how the ways leaders arise (appointed vs. emergent) affect the leader–follower interaction during creative group communication. Hyperscanning technique was adopted to reveal the underlying interpersonal neural correlates using functional near-infrared spectroscopy. Participants were assigned into 3-person groups to complete a creative problem-solving task. These groups were randomly split into conditions of appointed (condition A) and emergent (condition E) leaders. Creative group outcomes were better in condition E, accompanied by more frequent perspective-taking behaviors between leaders and followers. The interpersonal brain synchronization (IBS) increment for leader–follower pairs was significantly higher at the right angular gyrus (rAG), between the rAG and the right supramarginal gyrus (rSMG), and between the right middle temporal gyrus and the right motor cortex in condition E and positively correlated with perspective-taking behaviors between leaders and followers. The graph-based analysis showed higher nodal betweenness of the rAG and the rSMG in condition E. These results indicated the neural coupling of brain regions involved in mentalizing, semantic processing and motor imagery may underlie the dynamic information transmission between leaders and followers during creative group communication.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences

          G*Power (Erdfelder, Faul, & Buchner, 1996) was designed as a general stand-alone power analysis program for statistical tests commonly used in social and behavioral research. G*Power 3 is a major extension of, and improvement over, the previous versions. It runs on widely used computer platforms (i.e., Windows XP, Windows Vista, and Mac OS X 10.4) and covers many different statistical tests of the t, F, and chi2 test families. In addition, it includes power analyses for z tests and some exact tests. G*Power 3 provides improved effect size calculators and graphic options, supports both distribution-based and design-based input modes, and offers all types of power analyses in which users might be interested. Like its predecessors, G*Power 3 is free.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Complex brain networks: graph theoretical analysis of structural and functional systems.

            Recent developments in the quantitative analysis of complex networks, based largely on graph theory, have been rapidly translated to studies of brain network organization. The brain's structural and functional systems have features of complex networks--such as small-world topology, highly connected hubs and modularity--both at the whole-brain scale of human neuroimaging and at a cellular scale in non-human animals. In this article, we review studies investigating complex brain networks in diverse experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans) and provide an accessible introduction to the basic principles of graph theory. We also highlight some of the technical challenges and key questions to be addressed by future developments in this rapidly moving field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficient Behavior of Small-World Networks

              We introduce the concept of efficiency of a network as a measure of how efficiently it exchanges information. By using this simple measure, small-world networks are seen as systems that are both globally and locally efficient. This gives a clear physical meaning to the concept of "small world," and also a precise quantitative analysis of both weighted and unweighted networks. We study neural networks and man-made communication and transportation systems and we show that the underlying general principle of their construction is in fact a small-world principle of high efficiency.
                Bookmark

                Author and article information

                Journal
                Cerebral Cortex
                Oxford University Press (OUP)
                1047-3211
                1460-2199
                January 27 2023
                January 27 2023
                Article
                10.1093/cercor/bhac524
                36708018
                47ae7c82-5908-4c33-b1a3-05267d6c8d41
                © 2023

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article